• 제목/요약/키워드: Epoxy nanocomposite

검색결과 85건 처리시간 0.038초

에폭시-층상실리케이트 나노콤포지트의 전기장 분산기술 (Electric Field Dispersion Techniques of Epoxy-Layered Silicate Nanocomposites)

  • 이창훈;이재영;박재준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 춘계학술대회 논문집
    • /
    • pp.30-30
    • /
    • 2010
  • In order to prepare a epoxy/multilayered silicate nanocomposite, various mixing processes were tried and it was found that the silicate could not be fully exfoliated in the epoxy matrix through various mechanical mixing process. In this study, a new AC electric application method was developed to prepare epoxy/multilayered silicate nanocomposite. The exfoliation of the silicate was confirmed by XRD (X-Ray Diffraction) and TEM observation.

  • PDF

나노/마이크로 에폭시 복합체의 전기적, 열적특성 분석 (Analysis of electrical, thermal characteristic of Nano/Micro Epoxy composite)

  • 정의환;윤재훈;임기조;정수현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.99-99
    • /
    • 2010
  • Polymer nanocomposite has been attracting much attention as a new insulation material, since homogeneous dispersion of nm-sized inorganic fillers can improve various properties significantly. In this paper, various kinds of epoxy based nanocomposites were made and AC breakdown strength of Nano-TiO2 and micro-silica filler mixture of epoxy based composites were studied by sphere to sphere electrode. Moreover, nano- and micro-filler combinations were adopted as an approach toward practical application of nanocomposite insulation materials. Nano-TiO2 particle size is about 10nm and composites ratio was resin (100) : hardener (82) : accelerator (1.5). AC breakdown test was performed at room temperature (25 [$^{\circ}C$], 80 [$^{\circ}C$] and 100 [$^{\circ}C$] in the vicinity of Tg (90[$^{\circ}C$]). And thermal conductivity were measured by ASTM-D5470.

  • PDF

Styrenic Polymer/Organoclay Nanocomposite Prepared via in-situ Polymerization with an Azoinitiator Linked to an Epoxy Oligomer

  • Jeong, Han-Mo;Choi, Mi-Yeon;Kim, Min-Seok;An, Jin-Hee;Jung, Jin-Su;Kim, Jae-Hoon;Kim, Byung-Kyu;Cho, Sung-Man
    • Macromolecular Research
    • /
    • 제14권6호
    • /
    • pp.610-616
    • /
    • 2006
  • An azoinitiator linked to an epoxy oligomer, which could easily diffuse into the organoclay gallery and swell it, was used as an initiator to enhance the delamination of an organoclay, Cloisite 25A, in a matrix of styrenic polymers, poly(styrene-co-acrylonitrile) and polystyrene, during the preparation of a nanocomposite via an in-situ polymerization method. X-ray diffraction results and transmission electron microscopic observation of the morphology showed that the epoxy segment enhanced not only the delamination but also the extrication of ammonium cations from the organoclay gallery into the polymer matrix. The latter phenomenon induced the structural change of the alkyl group of ammonium cations in the gallery from a bilayer to monolayer structure, and also decreased the glass-rubber transition temperature as measured by a differential scanning calorimeter and dynamic mechanical analyzer.

Improvement of Electrical and Thermal Characteristics of Nano-Micro Epoxy Composite

  • Cho, Sung-Hoon;Kim, Yu-Min;Kwon, Jung-Hun;Lim, Kee-Joe;Jung, Eui-Hwan;Lee, Hung-Kyu;Shin, Pan-Seok
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권4호
    • /
    • pp.160-163
    • /
    • 2011
  • Polymer nanocomposite has been attracting more attention as a new insulation material because homogeneous dispersion of nano-sized inorganic fillers can improve various properties significantly. In this paper, various kinds of epoxy-based nanocomposites were made, and the AC breakdown strengths of Nano filler and micro-$SiO_2$ filler mixtures of epoxy-based composites were analyzed using sphere-to-sphere electrodes. Moreover, nano- and microfiller combinations were investigated as an approach to practical application of nanocomposite insulation materials. Its composition ratio was 100 (resin):82 (hardener):1.5 (accelerator). AC breakdown tests were performed at room temperature ($25^{\circ}C$), $80^{\circ}C$, and $100^{\circ}C$ in the vicinity of $T_g$ ($90^{\circ}C$). Thermal conductivity was measured using TC-30.

Investigation of Cure Kinetics and Storage Stability of the o-Cresol Novolac Epoxy Nanocomposites with Pre-intercalated Phenolic Hardeners

  • Hwang, Tae-Yong;Lee, Jae-Wook;Lee, Sang-Min;Nam, Gi-Joon
    • Macromolecular Research
    • /
    • 제17권2호
    • /
    • pp.121-127
    • /
    • 2009
  • The cure kinetics of the epoxy-layered, silicate nanocomposites were studied by differential scanning calorimetry under isothermal and dynamic conditions. The materials used in this study were o-cresol novolac epoxy resin and phenol novolac hardener, with organically modified layered silicates. Various kinetic parameters, including the reaction order, activation energy, and kinetic rate constants, were investigated, and the storage stability of the epoxy-layered silicate nanocomposites was measured. To synthesize the epoxy-layered silicate nanocomposites, the phenolic hardener underwent pre-intercalation by layered silicate. From the cure kinetics analyses, the organically modified layered silicate decreased the activation energy during cure reaction in the epoxy/phenolic hardener system. In addition, the storage stability of the nanocomposite with the pre-intercalated phenolic hardener was significantly increased compared to that of the nanocomposite with direct mixing of epoxy, phenolic hardener, and layered silicate. This was due to the protective effect of the reaction between onium ions and epoxide groups.

초음파 혼합에 근거한 에폭시 나노복합체의 제조와 특성 (Synthesis and Characterization of Epoxy Based Nanocomposite Materials Using an Ultrasonicator)

  • 이도영;박경문;박윤국
    • Korean Chemical Engineering Research
    • /
    • 제46권5호
    • /
    • pp.945-948
    • /
    • 2008
  • 나노복합체는 높은 기계적 강도, 내열성, 그 밖의 많은 장점들로 인하여 첨가제에 따라 자동차, 우주항공 그리고 생체분야에 응용되어 사용되어지고 있다. 클로자이트(Cloisite) 15A 존재하의 에폭시 수지를 바탕으로 한 나노복합체를 합성하고 TEM, XRD, TGA, 그리고 DMA 등을 이용하여 분석하였다. 첨가제로 사용된 클레이의 층간간격(d-space)의 영향을 알아보기 위하여 클로자이트 20A 존재 하에서도 비슷한 나노복합체를 합성하였다. 나노복합체의 제조 시에 전통적으로 이용되어져온 핫플레이트와 자석을 이용한 제조법이외에도 초음파를 이용하여 나노복합체를 제조하였으나 두 경우 모두 나노복합체의 구조가 삽입형 구조를 얻어 구조면에서의 혼합의 영향이 없었다. 클레이가 존재하지 않았을 때에 비하여 5 wt%의 클로자이트 15A 존재 하에서 20분간 초음파로 혼합시의 복합체의 저장 탄성률이 10% 증가됨을 보였다. 일반적으로 클로자이트 15A 존재 하에서의 복합체가 클로자이트 20A 존재 하에서의 복합체보다 좋은 저장 탄성률을 보였다.

Effect of Electric Field Frequency on the AC Electrical Treeing Phenomena in an Epoxy/Layered Silicate Nanocomposite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권5호
    • /
    • pp.278-281
    • /
    • 2013
  • The effects of electric field frequency on the AC electrical treeing phenomena in an epoxy/layered silicate (1.5 wt%) were investigated in a needle-plate electrode arrangement. A layered silicate was exfoliated in an epoxy-base resin with AC electric field apparatus. To measure the treeing initiation and propagation- and the breakdown rate, a constant alternating current (AC) of 10 kV with three different electric field frequencies (60, 500, and 1,000 Hz) was applied to the specimen in the needle-plate electrode specimen in an insulating oil bath at $130^{\circ}C$. At 60 Hz, the treeing initiation time was 12 min, the propagation rate was $0.24{\times}10^{-3}$ mm/min, and the morphology was a dense branch type. As the electric field frequency increased, the treeing initiation time decreased and the propagation rate increased. At 1,000 Hz, the treeing initiation time was 5 min, the propagation rate was $0.30{\times}10^{-3}$ mm/min, and the morphology was a dense bush type.

에폭시기반 마이크로 그러고 나노입자가 혼합된 콤포지트의 기계적특성 (Mechanical Properties for Micro-and-Nano- Mixture Composites Based Epoxy Resins)

  • 권순석;최보성;백관현;이창훈;박재준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.84-84
    • /
    • 2010
  • Nano particles (10nm SiO2) were silane-treated in order to modify the surface characteristics in a epoxy nanocomposite. Then. micro particles ($3{\mu}m$ SiO2) were poured into the epoxy nanocomposite using various mixing process and epoxy/ micro-and-nano- mixed composites (EMNC) were prepared. The thermal (Tg) and mechanical (tensile and flexural strength) properties were measured by DMA and UTM and the data was estimated by Weibull plot.

  • PDF

Functionalization of graphene nanoplatelets using sugar azide for graphene/epoxy nanocomposites

  • Bose, Saswata;Drzal, Lawrence T.
    • Carbon letters
    • /
    • 제16권2호
    • /
    • pp.101-106
    • /
    • 2015
  • We report a covalent functionalization of graphene nanoparticles (GnPs) employing 2,3,4-Tri-O-acetyl-${\beta}$-D-xylopyranosyl azide followed by fabrication of an epoxy/functionalized graphene nanocomposite and an evaluation of its thermo-mechanical performance. Successful functionalization of GnP was confirmed via thermal and spectroscopic study. Raman spectroscopy indicated that the functionalization was on the edge of the graphene sheets; the basal plane was not perturbed as a result of the functionalization. The epoxy/functionalized GnP composite system exhibited an increase in flexural modulus (~18%) and glass transition temperature (${\sim}10^{\circ}C$) compared to an un-functionalized GnP based epoxy composite.

Sports balls made of nanocomposite: investigating how soccer balls motion and impact

  • Ling Yang;Zhen Bai
    • Advances in nano research
    • /
    • 제16권4호
    • /
    • pp.353-363
    • /
    • 2024
  • The incorporation of nanoplatelets in composite and polymeric materials represents a recent and innovative approach, holding substantial promise for diverse property enhancements. This study focuses on the application of nanocomposites in the production of sports equipment, particularly soccer balls, aiming to bridge the gap between theoretical advancements and practical implications. Addressing the longstanding challenge of suboptimal interaction between carbon nanofillers and epoxy resin in epoxy composites, this research pioneers inventive solutions. Furthermore, the investigation extends into unexplored territory, examining the integration of glass fiber/epoxy composites with nanoparticles. The incorporation of nanomaterials, specifically expanded graphite and graphene, at a concentration of 25.0% by weight in both the epoxy structure and the composite with glass fibers demonstrates a marked increase in impact resistance compared to their nanomaterial-free counterparts. The research transcends laboratory experiments to explore the practical applications of nanocomposites in the design and production of sports equipment, with a particular emphasis on soccer balls. Analytical techniques such as infrared spectroscopy and scanning electron microscopy are employed to scrutinize the surface chemical structure and morphology of the epoxy nanocomposites. Additionally, an in-depth examination of the thermal, mechanical, viscoelastic, and conductive properties of these materials is conducted. Noteworthy findings include the efficacy of surface modification of carbon nanotubes in preventing accumulation and enhancing their distribution within the epoxy matrix. This optimization results in improved interfacial interactions, heightened thermal stability, superior mechanical properties, and enhanced electrical conductivity in the nanocomposite.