Browse > Article
http://dx.doi.org/10.4313/TEEM.2013.14.5.278

Effect of Electric Field Frequency on the AC Electrical Treeing Phenomena in an Epoxy/Layered Silicate Nanocomposite  

Park, Jae-Jun (Department of Electrical and Electronic Engineering, Joongbu University)
Publication Information
Transactions on Electrical and Electronic Materials / v.14, no.5, 2013 , pp. 278-281 More about this Journal
Abstract
The effects of electric field frequency on the AC electrical treeing phenomena in an epoxy/layered silicate (1.5 wt%) were investigated in a needle-plate electrode arrangement. A layered silicate was exfoliated in an epoxy-base resin with AC electric field apparatus. To measure the treeing initiation and propagation- and the breakdown rate, a constant alternating current (AC) of 10 kV with three different electric field frequencies (60, 500, and 1,000 Hz) was applied to the specimen in the needle-plate electrode specimen in an insulating oil bath at $130^{\circ}C$. At 60 Hz, the treeing initiation time was 12 min, the propagation rate was $0.24{\times}10^{-3}$ mm/min, and the morphology was a dense branch type. As the electric field frequency increased, the treeing initiation time decreased and the propagation rate increased. At 1,000 Hz, the treeing initiation time was 5 min, the propagation rate was $0.30{\times}10^{-3}$ mm/min, and the morphology was a dense bush type.
Keywords
Electrical treeing; Epoxy nanocomposite; Layered silicate; Treeing phenomena; Electric field frequency;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. J. Suh and O. O. Park, J. Appl. Polym. Sci., 83, 2143 (2002) [DOI: http://dx.doi.org/10.1002/app.10166].   DOI   ScienceOn
2 L. Zhang, Y. Z. Wang, Y. Q. Wang, Y. Sui and D. S. Yu, J. Appl. Polym. Sci., 78, 1873 (2000) [DOI: http://dx.doi.org/10.1002/1097-4628(20001209)].   DOI   ScienceOn
3 K. Varlot, E. Reynaud, M. H. Kloppfer, G. Vigler and J. Varlet, J. Polym. Sci.: Part B, 39, 1360 (2001) [DOI: http://dx.doi.org/10.1002/polb.1108].   DOI   ScienceOn
4 N. Artzi, Y. Nir, M. Narkis and A. Siegmann, J. Polym. Sci.: Part B, 40, 1741 (2002) [DOI: http://dx.doi.org/10.1002/polb.10236].   DOI   ScienceOn
5 H. L. Tyan, K. H. Wei and T. E. Hsieh, J. Polym. Sci.: Part B, 38, 2873 (2000) [DOI: http://dx.doi.org/10.1002/1099-0488(20001115)].
6 J. Y. Lee, M. J. Shim and S. W. Kim, Polym. Eng. Sci., 39, 1993 (1999) [DOI: http://dx.doi.org/10.1002/pen.11592].   DOI
7 Y. S. Cho, M. J. Shim and S. W. Kim, Mater. Chem. Phys., 66, 70 (2000) [DOI: http://dx.doi.org/10.1016/S0254-0584(00)00272-8].   DOI   ScienceOn
8 R. Sarathi, R. K. Sahu and P. Rajeshkumar, Mater. Sci. Eng.: A, 445, 567 (2007) [DOI: http://dx.doi.org/10.1016/j.msea.2006.09.077].   DOI   ScienceOn
9 T. Tanaka, G. C. Montanari and R. Mulhaupt, IEEE Trans. Dielectr. Electr. Insul., 11, 763 (2004) [DOI:http://dx.doi.org/10.1109/TDEI.2004.1349782].   DOI   ScienceOn
10 T. Imai, F. Sawa, T. Yoshimitsu, T. Ozaki, and T. Shimizu, IEEE Annual Report Conference on CEIDP, p.239 (2004).
11 T. Tanaka, IEEE Transactions on Dielectrics and Electrical Insulation, 9, 704 (2002) [DOI: http://dx.doi.org/10.1109/TDEI.2002.1038658].   DOI   ScienceOn
12 R. Vogelsan, T. Farr, and K. Frohlich, IEEE Transactions on Dielectrics and Electrical Insulation, 13, 373 (2006) [DOI: http://dx.doi.org/10.1109/TDEI.2006.1624282].   DOI   ScienceOn
13 L. A. Dissado, IEEE Transactions on Dielectrics and Electrical Insulation, 9, 483 (2002) [DOI: http://dx.doi.org/10.1109/TDEI.2002.1024425].   DOI   ScienceOn
14 J. J. Park and J. Y. Lee, IEEE Trans. Dielectr. Electr. Insul. 17, 1516 (2010) [DOI: http://dx.doi.org/10.1109/TDEI.2010.5595553].   DOI   ScienceOn
15 K. Theodosiou and I. Gialas, J. Electr. Eng., 59, 248 (2008).