Browse > Article
http://dx.doi.org/10.5714/CL.2015.16.2.101

Functionalization of graphene nanoplatelets using sugar azide for graphene/epoxy nanocomposites  

Bose, Saswata (Department of Chemical Engineering and Materials Science, Composite Materials and Structures Center, Michigan State University)
Drzal, Lawrence T. (Department of Chemical Engineering and Materials Science, Composite Materials and Structures Center, Michigan State University)
Publication Information
Carbon letters / v.16, no.2, 2015 , pp. 101-106 More about this Journal
Abstract
We report a covalent functionalization of graphene nanoparticles (GnPs) employing 2,3,4-Tri-O-acetyl-${\beta}$-D-xylopyranosyl azide followed by fabrication of an epoxy/functionalized graphene nanocomposite and an evaluation of its thermo-mechanical performance. Successful functionalization of GnP was confirmed via thermal and spectroscopic study. Raman spectroscopy indicated that the functionalization was on the edge of the graphene sheets; the basal plane was not perturbed as a result of the functionalization. The epoxy/functionalized GnP composite system exhibited an increase in flexural modulus (~18%) and glass transition temperature (${\sim}10^{\circ}C$) compared to an un-functionalized GnP based epoxy composite.
Keywords
graphene nanoparticles; sugar azide; nanocomposite; spectroscopy; thermomechanical property;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater, 20, 4490 (2008). http://dx.doi.org/10.1002/adma.200801306.   DOI
2 Geim AK, Novoselov KS. The rise of graphene. Nat Mater, 6, 183 (2007). http://dx.doi.org/10.1038/nmat1849.   DOI
3 Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J. Facile synthesis and characterization of graphene nanosheets. J Phys Chem C, 112, 8192 (2008). http://dx.doi.org/10.1021/jp710931h.   DOI
4 Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385 (2008). http://dx.doi.org/10.1126/science.1157996.   DOI   ScienceOn
5 Chen H, Muller MB, Gilmore KJ, Wallace GG, Li D. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater, 20, 3557 (2008). http://dx.doi.org/10.1002/adma.200800757.   DOI   ScienceOn
6 Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Graphenebased composite materials. Nature, 442, 282 (2006). http://dx.doi.org/10.1038/nature04969.   DOI
7 Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior thermal conductivity of single-layer graphene. Nano Lett, 8, 902 (2008). http://dx.doi.org/10.1021/nl0731872.   DOI
8 Gomez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, Kern K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett, 7, 3499 (2007). http://dx.doi.org/10.1021/nl072090c.   DOI
9 Zhang Y, Tang TT, Girit C, Hao Z, Martin MC, Zettl A, Crommie MF, Shen YR, Wang F. Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 459, 820 (2009). http://dx.doi.org/10.1038/nature08105.   DOI
10 Li D, Muller MB, Gilje S, Kaner RB, Wallace CG. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol, 3, 101 (2008). http://dx.doi.org/10.1038/nnano.2007.451.   DOI
11 Si Y, Samulski ET. Synthesis of water soluble graphene. Nano Lett, 8, 1679 (2008). http://dx.doi.org/10.1021/nl080604h.   DOI
12 Bai H, Xu Y, Zhao L, Li C, Shi G. Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem Commun, 13, 1667 (2009). http://dx.doi.org/10.1039/B821805F.
13 Kudin KN, Ozbas B, Schniepp HC, Prud'homme RK, Aksay IA, Car R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett, 8, 36 (2008). http://dx.doi.org/10.1021/nl071822y.   DOI
14 Bose S, Kuila T, Mishra AK, Kim NH, Lee JH. Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: an environmentally friendly method. J Mater Chem, 22, 9696 (2012). http://dx.doi.org/10.1039/C2JM00011C.   DOI
15 Zhou X, Zhang J, Wu H, Yang H, Zhang J, Guo S. Reducing graphene oxide via hydroxylamine: a simple and efficient route to graphene. J Phys Chem C, 115, 11957 (2011). http://dx.doi.org/10.1021/jp202575j.   DOI
16 Lin Z, Yao Y, Li Z, Liu Y, Li Z, Wong CP. Solvent-assisted thermal reduction of graphite oxide. J Phys Chem C, 114, 14819 (2010). http://dx.doi.org/10.1021/jp1049843.   DOI
17 Cancado LG, Pimenta MA, Neves BRA, Dantas MSS, Jorio A. Influence of the atomic structure on the Raman spectra of graphite edges. Phys Rev Lett, 93, 247401 (2004). http://dx.doi.org/10.1103/PhysRevLett.93.247401.   DOI
18 Ferrari AC. Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun, 143, 47 (2007). http://dx.doi.org/10.1016/j.ssc.2007.03.052.   DOI
19 Bose S, Kim NH, Kuila T, Lau KT, Lee JH. Electrochemical performance of a graphene-polypyrrole nanocomposite as a supercapacitor electrode. Nanotechnology, 22, 295202 (2011). http://dx.doi.org/10.1088/0957-4484/22/29/295202.   DOI
20 Leinonen H, Pettersson M, Lajunen M, Water-soluble carbon nanotubes through sugar azide functionalization. Carbon, 49, 1299 (2011). http://dx.doi.org/10.1016/j.carbon.2010.11.049.   DOI