• Title/Summary/Keyword: Epithelial-mesenchymal transition

Search Result 177, Processing Time 0.026 seconds

Transformation of Mouse Liver Cells by Methylcholanthrene Leads to Phenotypic Changes Associated with Epithelial-mesenchymal Transition

  • Oh, Jiyun;Kwak, Jae-Hwan;Kwon, Do-Young;Kim, A-Young;Oh, Dal-Seok;Je, Nam Kyung;Lee, Jaewon;Jung, Young-Suk
    • Toxicological Research
    • /
    • v.30 no.4
    • /
    • pp.261-266
    • /
    • 2014
  • Environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs) have been implicated in cancer development and progression. However, the effects of PAHs on carcinogenesis are still poorly understood. Here, we characterized a mouse cancer cell line BNL 1ME A. 7R.1 (1MEA) derived by transformation of non-tumorigenic liver cell line BNL CL.2 (BNL) using 3-methylcholanthrene (3MC), a carcinogenic PAH. RT-PCR and immunoblot analysis were used to determine the expression level of mRNA and proteins, respectively. To determine functionality, cell motility was assessed in vitro using a transwell migration assay. Both mRNA and protein levels of E-cadherin were significantly decreased in 1MEA cells in comparison with BNL cells. While the expression levels of mesenchymal markers and related transcription factors were enhanced in 1MEA cells, which could lead to increase in cell motility. Indeed, we found that 7-day exposure of BNL cells to 3-MC reduced the level of the adhesion molecule and epithelial marker E-cadherin and increased reciprocally the level of the mesenchymal marker vimentin in a dose-dependent manner. Taken together, these results indicate that the process of epithelial-mesenchymal transition (EMT) may be activated during premalignant transformation induced by 3-MC. A mechanism study to elucidate the relation between 3-MC exposure and EMT is underway in our laboratory.

Epithelial-mesenchymal Transition and Cell Invasion

  • Son, Hwa-Jin;Moon, Aree
    • Toxicological Research
    • /
    • v.26 no.4
    • /
    • pp.245-252
    • /
    • 2010
  • Epithelial-mesenchymal transition (EMT) is a complex process in which epithelial cells acquire the characteristics of invasive mesenchymal cells. EMT has been implicated in cancer progression and metastasis as well as the formation of many tissues and organs during development. Epithelial cells undergoing EMT lose cell-cell adhesion structures and polarity, and rearrange their cytoskeletons. Several oncogenic pathways such as transforming growth factor (TGF)-$\beta$, Wnt, and Notch signaling pathways, have been shown to induce EMT. These pathways have activated transcription factors including Snail, Slug, and the ZEB family which work as transcriptional repressors of E-cadherin, thereby making epithelial cells motile and resistant to apoptosis. Mounting evidence shows that EMT is associated with cell invasion and tumor progression. In this review, we summarize the characteristic features of EMT, pathways leading to EMT, and the role of EMT in cell invasion. Three topics are addressed in this review: (1) Definition of EMT, (2) Signaling pathways leading to EMT, (3) Role of EMT in cell invasion. Understanding the role of EMT in cell invasion will provide valuable information for establishing strategies to develop anti-metastatic therapeutics which modulate malignant cellular processes mediated by EMT.

Autophagy down-regulates NLRP3-dependent inflammatory response of intestinal epithelial cells under nutrient deprivation

  • Yun, Yewon;Baek, Ahruem;Kim, Dong-Eun
    • BMB Reports
    • /
    • v.54 no.5
    • /
    • pp.260-265
    • /
    • 2021
  • Dysregulation of inflammation induced by noninfectious stress conditions, such as nutrient deprivation, causes tissue damage and intestinal permeability, resulting in the development of inflammatory bowel diseases. We studied the effect of autophagy on cytokine secretion related to intestinal permeability under nutrient deprivation. Autophagy removes NLRP3 inflammasomes via ubiquitin-mediated degradation under starvation. When autophagy was inhibited, starvation-induced NLRP3 inflammasomes and their product, IL-1β, were significantly enhanced. A prolonged nutrient deprivation resulted in an increased epithelial mesenchymal transition (EMT), leading to intestinal permeability. Under nutrient deprivation, IL-17E/25, which is secreted by IL-1β, demolished the intestinal epithelial barrier. Our results suggest that an upregulation of autophagy maintains the intestinal barrier by suppressing the activation of NLRP3 inflammasomes and the release of their products, including pro-inflammatory cytokines IL-1β and IL-17E/25, under nutrient deprivation.

Menadione (Vitamin K3) Induces Apoptosis of Human Oral Cancer Cells and Reduces their Metastatic Potential by Modulating the Expression of Epithelial to Mesenchymal Transition Markers and Inhibiting Migration

  • Suresh, Shruthy;Raghu, Dinesh;Karunagaran, Devarajan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5461-5465
    • /
    • 2013
  • Oral cancer is one of the most commonly occurring cancers worldwide, decreasing the patient's survival rate due to tumor recurrence and metastasis. Menadione (Vitamin K3) is known to exhibit cytotoxicity in various cancer cells but the present study focused on its effects on viability, apoptosis, epithelial to mesenchymal transition (EMT), anchorage independent growth and migration of oral cancer cells. The results show that menadione is more cytotoxic to SAS (oral squamous carcinoma) cells but not to non-tumorigenic HEK293 and HaCaT cells. Menadione treatment increased the expression of pro-apoptotic proteins, Bax and p53, with a concurrent decrease in anti-apoptotic proteins, Bcl-2 and p65. Menadione induced the expression of E-cadherin but reduced the expression of EMT markers, vimentin and fibronectin. Menadione also inhibited anchorage independent growth and migration in SAS cells. These findings reveal and confirm that menadione is a potential candidate in oral cancer therapy as it exhibits cytotoxic, antineoplastic and antimigratory effects besides effectively blocking EMT in oral cancer cells.

Honokiol Suppresses Renal Cancer Cells' Metastasis via Dual-Blocking Epithelial-Mesenchymal Transition and Cancer Stem Cell Properties through Modulating miR-141/ZEB2 Signaling

  • Li, Weidong;Wang, Qian;Su, Qiaozhen;Ma, Dandan;An, Chang;Ma, Lei;Liang, Hongfeng
    • Molecules and Cells
    • /
    • v.37 no.5
    • /
    • pp.383-388
    • /
    • 2014
  • Renal cell carcinoma (RCC) is associated with a high frequency of metastasis and only few therapies substantially prolong survival. Honokiol, isolated from Magnolia spp. bark, has been shown to exhibit pleiotropic anticancer effects in many cancer types. However, whether honokiol could suppress RCC metastasis has not been fully elucidated. In the present study, we found that honokiol suppressed renal cancer cells' metastasis via dual-blocking epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) properties. In addition, honokiol inhibited tumor growth in vivo. It was found that honokiol could upregulate miR-141, which targeted ZEB2 and modulated ZEB2 expression. Honokiol reversed EMT and suppressed CSC properties partly through the miR-141/ZEB2 axis. Our study suggested that honokiol may be a suitable therapeutic strategy for RCC treatment.

Phosphorylation and Reorganization of Keratin Networks: Implications for Carcinogenesis and Epithelial Mesenchymal Transition

  • Kim, Hyun Ji;Choi, Won Jun;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.23 no.4
    • /
    • pp.301-312
    • /
    • 2015
  • Metastasis is one of hallmarks of cancer and a major cause of cancer death. Combatting metastasis is highly challenging. To overcome these difficulties, researchers have focused on physical properties of metastatic cancer cells. Metastatic cancer cells from patients are softer than benign cancer or normal cells. Changes of viscoelasticity of cancer cells are related to the keratin network. Unexpectedly, keratin network is dynamic and regulation of keratin network is important to the metastasis of cancer. Keratin is composed of heteropolymer of type I and II. Keratin connects from the plasma membrane to nucleus. Several proteins including kinases, and protein phosphatases bind to keratin intermediate filaments. Several endogenous compounds or toxic compounds induce phosphorylation and reorganization of keratin network in cancer cells, leading to increased migration. Continuous phosphorylation of keratin results in loss of keratin, which is one of the features of epithelial mesenchymal transition (EMT). Therefore, several proteins involved in phosphorylation and reorganization of keratin also have a role in EMT. It is likely that compounds controlling phosphorylation and reorganization of keratin are potential candidates for combating EMT and metastasis.

Autophagy inhibition by cudraxanthone D regulates epithelial-mesenchymal transition in SCC25 cells

  • Yu, Su-Bin;Bang, Tae-Hyun;Kang, Hae-Mi;Park, Bong-Soo;Kim, In-Ryoung
    • International Journal of Oral Biology
    • /
    • v.46 no.1
    • /
    • pp.30-38
    • /
    • 2021
  • Cudraxanthone D (CD) is a natural xanthone compound derived from the root barks of Cudrania tricuspidata. However, the biological functions of CD in human metabolism have been rarely reported until now. Autophagy is the self-degradation process related to cancer cell metastasis. Here, we elucidated the effects of CD on human oral squamous cell carcinoma (OSCC) cells' metastatic ability. We confirmed that CD effectively decreased the proliferation and viability of SCC25 human OSCC cells in time- and dose-dependent manners. Also, the metastasis phenotype of the SCC25 cell (migration, invasion, and epithelial-mesenchymal transition [EMT]) was inhibited by CD. To further investigate the mechanism by which CD inhibited the metastatic capacity, we detected the relationship between EMT and autophagy in the SCC25 cells. The results revealed that CD inhibited the metastasis of the SCC25 cells by attenuating autophagy. Thus, our findings produced a potential novel agent for the treatment of human OSCC metastasis.

Natural Compound Shikonin Induces Apoptosis and Attenuates Epithelial to Mesenchymal Transition in Radiation-Resistant Human Colon Cancer Cells

  • Shilnikova, Kristina;Piao, Mei Jing;Kang, Kyoung Ah;Fernando, Pincha Devage Sameera Madushan;Herath, Herath Mudiyanselage Udari Lakmini;Cho, Suk Ju;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.30 no.2
    • /
    • pp.137-144
    • /
    • 2022
  • Radiation resistance represents an imperative obstacle in the treatment of patients with colorectal cancer, which remains difficult to overcome. Here, we explored the anti-proliferative and migration-inhibiting properties of the natural product shikonin on a radiation-resistant human colon carcinoma cell line (SNU-C5RR). Shikonin reduced the viability of these cells in a dose-dependent manner; 38 µM of shikonin was determined as the half-maximal inhibitory concentration. Shikonin induced apoptotic cell death, as demonstrated by increased apoptotic body formation and the number of TUNEL-positive cells. Moreover, shikonin enhanced mitochondrial membrane depolarization and Bax expression and also decreased Bcl-2 expression with translocation of cytochrome c from mitochondria into the cytosol. In addition, shikonin activated mitogen-activated protein kinases, and their specific inhibitors reduced the cytotoxic effects of shikonin. Additionally, shikonin decreased the migration of SNU-C5RR cells via the upregulation of E-cadherin and downregulation of N-cadherin. Taken together, these results suggest that shikonin induces mitochondria-mediated apoptosis and attenuates epithelial-mesenchymal transition in SNU-C5RR cells.

Establishment of Hertwig's Epithelial Root Sheath/Epithelial Rests of Malassez Cell Line from Human Periodontium

  • Nam, Hyun;Kim, Ji-Hye;Kim, Jae-Won;Seo, Byoung-Moo;Park, Joo-Cheol;Kim, Jung-Wook;Lee, Gene
    • Molecules and Cells
    • /
    • v.37 no.7
    • /
    • pp.562-567
    • /
    • 2014
  • Human Hertwig's epithelial root sheath/epithelial rests of Malassez (HERS/ERM) cells are epithelial remnants of teeth residing in the periodontium. Although the functional roles of HERS/ERM cells have yet to be elucidated, they are a unique epithelial cell population in adult teeth and are reported to have stem cell characteristics. Therefore, HERS/ERM cells might play a role as an epithelial component for the repair or regeneration of dental hard tissues; however, they are very rare population in periodontium and the primary isolation of them is considered to be difficult. To overcome these problems, we immortalized primary HERS/ERM cells isolated from human periodontium using SV40 large T antigen (SV40 LT) and performed a characterization of the immortalized cell line. Primary HERS/ERM cells could not be maintained for more than 6 passages; however, immortalized HERS/ERM cells were maintained for more than 20 passages. There were no differences in the morphological and immunophenotypic characteristics of HERS/ERM cells and immortalized HERS/ERM cells. The expression of epithelial stem cell and embryonic stem cell markers was maintained in immortalized HERS/ERM cells. Moreover, immortalized HERS/ERM cells could acquire mesenchymal phenotypes through the epithelial-mesenchymal transition via TGF-${\beta}1$. In conclusion, we established an immortalized human HERS/ERM cell line with SV40 LT and expect this cell line to contribute to the understanding of the functional roles of HERS/ERM cells and the tissue engineering of teeth.

Inhibition of Plasminogen Activator Inhibitor-1 Expression in Smoke-Exposed Alveolar Type II Epithelial Cells Attenuates Epithelial-Mesenchymal Transition

  • Song, Jeong-Sup;Kang, Chun-Mi
    • Tuberculosis and Respiratory Diseases
    • /
    • v.70 no.6
    • /
    • pp.462-473
    • /
    • 2011
  • Background: Smoking is a risk factor for idiopathic pulmonary fibrosis (IPF), but the mechanism of the association remains obscure. There is evidence demonstrating that plasminogen activator inhibitor-1 (PAI-1) is involved in the progression of pulmonary fibrosis. This study was to determine whether the administration of small interfering RNA (siRNA) targeting PAI-1 or PAI-1 inhibitor to the cigarette smoking extract (CSE)-exposed rat alveolar type II epithelial cells (ATII cells) limits the epithelial-mesenchymal transition (EMT). Methods: ATII cells were isolated from lung of SD-rat using percoll gradient method and cultured with 5% CSE. The EMT was determined from the ATII cells by measuring the real-time RT PCR and western blotting after the PAI-1 siRNA transfection to the cells and after administration of tiplaxtinin, an inhibitor of PAI-1. The effect of PAI-1 inhibitor was also evaluated in the bleomycin-induced rats. Results: PAI-1 was overexpressed in the smoking exposed ATII cells and was directly associated with EMT. The EMT from the ATII cells was suppressed by PAI-1 siRNA transfection or administration of tiplaxtinin. Signaling pathways for EMT by smoking extract were through the phosphorylation of SMAD2 and ERK1/2, and finally Snail expression. Tiplaxtinin also suppressed the pulmonary fibrosis and PAI-1 expression in the bleomycin-induced rats. Conclusion: Our data shows that CSE induces rat ATII cells to undergo EMT by PAI-1 via SMAD2-ERK1/2-Snail activation. This suppression of EMT by PAI-1 siRNA transfection or PAI-1 inhibitor in primary type II alveolar epithelial cells might be involved in the attenuation of bleomycin-induced pulmonary fibrosis in rats.