DOI QR코드

DOI QR Code

Autophagy down-regulates NLRP3-dependent inflammatory response of intestinal epithelial cells under nutrient deprivation

  • Yun, Yewon (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Baek, Ahruem (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Kim, Dong-Eun (Department of Bioscience and Biotechnology, Konkuk University)
  • Received : 2020.09.25
  • Accepted : 2020.12.11
  • Published : 2021.05.31

Abstract

Dysregulation of inflammation induced by noninfectious stress conditions, such as nutrient deprivation, causes tissue damage and intestinal permeability, resulting in the development of inflammatory bowel diseases. We studied the effect of autophagy on cytokine secretion related to intestinal permeability under nutrient deprivation. Autophagy removes NLRP3 inflammasomes via ubiquitin-mediated degradation under starvation. When autophagy was inhibited, starvation-induced NLRP3 inflammasomes and their product, IL-1β, were significantly enhanced. A prolonged nutrient deprivation resulted in an increased epithelial mesenchymal transition (EMT), leading to intestinal permeability. Under nutrient deprivation, IL-17E/25, which is secreted by IL-1β, demolished the intestinal epithelial barrier. Our results suggest that an upregulation of autophagy maintains the intestinal barrier by suppressing the activation of NLRP3 inflammasomes and the release of their products, including pro-inflammatory cytokines IL-1β and IL-17E/25, under nutrient deprivation.

Keywords

Acknowledgement

This research was supported by grants from the National Research Foundation of Korea (2017R1E1A1A01074656) funded by the Korean government. We would like to thank Editage (www.editage.co.kr) for English language editing.

References

  1. Vaziri ND, Yuan J, Nazertehrani S, Ni Z and Liu S (2013) Chronic kidney disease causes disruption of gastric and small intestinal epithelial tight junction. Am J Nephrol 38, 99-103 https://doi.org/10.1159/000353764
  2. Tabat MW, Marques TM, Markgren M, Lofvendahl L, Brummer RJ and Wall R (2020) Acute effects of butyrate on induced hyperpermeability and tight junction protein expression in human colonic tissues. Biomolecules 10, 766 https://doi.org/10.3390/biom10050766
  3. Zareie M, Johnson-Henry K, Jury J et al (2006) Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress. Gut 55, 1553-1560 https://doi.org/10.1136/gut.2005.080739
  4. Kiesslich R, Duckworth CA, Moussata D et al (2012) Local barrier dysfunction identified by confocal laser endomicroscopy predicts relapse in inflammatory bowel disease. Gut 61, 1146-1153 https://doi.org/10.1136/gutjnl-2011-300695
  5. Bouma G, Oudkerk Pool M, Crusius JB et al (1997) Evidence for genetic heterogeneity in inflammatory bowel disease (IBD); HLA genes in the predisposition to suffer from ulcerative colitis (UC) and Crohn's disease (CD). Clin Exp Immunol 109, 175-179 https://doi.org/10.1046/j.1365-2249.1997.4121510.x
  6. Ukena SN, Singh A, Dringenberg U et al (2007) Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS One 2, e1308 https://doi.org/10.1371/journal.pone.0001308
  7. Kanak MA, Shahbazov R, Yoshimatsu G, Levy MF, Lawrence MC and Naziruddin B (2017) A small molecule inhibitor of NF kappa B blocks ER stress and the NLRP3 inflammasome and prevents progression of pancreatitis. J Gastroenterol 52, 352-365 https://doi.org/10.1007/s00535-016-1238-5
  8. Martinon F, Burns K and Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10, 417-426 https://doi.org/10.1016/S1097-2765(02)00599-3
  9. Wang H, Wang G, Liang Y et al (2019) Redox regulation of hepatic NLRP3 inflammasome activation and immune dysregulation in trichloroethene-mediated autoimmunity. Free Radic Biol Med 143, 223-231 https://doi.org/10.1016/j.freeradbiomed.2019.08.014
  10. Al-Sadi RM and Ma TY (2007) IL-1beta causes an increase in intestinal epithelial tight junction permeability. J Immunol 178, 4641-4649 https://doi.org/10.4049/jimmunol.178.7.4641
  11. Tang Z, Lin MG, Stowe TR et al (2013) Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nature 502, 254-257 https://doi.org/10.1038/nature12606
  12. Pilli M, Arko-Mensah J, Ponpuak M et al (2012) TBK-1 promotes autophagy-mediated antimicrobial defense by con-trolling autophagosome maturation. Immunity 37, 223-234 https://doi.org/10.1016/j.immuni.2012.04.015
  13. Bruns C, McCaffery JM, Curwin AJ, Duran JM and Malhotra V (2011) Biogenesis of a novel compartment for autophagosome-mediated unconventional protein secretion. J Cell Biol 195, 979-992 https://doi.org/10.1083/jcb.201106098
  14. Houtman J, Freitag K, Gimber N, Schmoranzer J, Heppner FL and Jendrach M (2019) Beclin1-driven autophagy modulates the inflammatory response of microglia via NLRP3. EMBO J 38, e99430
  15. Saitoh T, Fujita N, Jang MH et al (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456, 264-268 https://doi.org/10.1038/nature07383
  16. Wong M, Ganapathy AS, Suchanec E, Laidler L, Ma T and Nighot P (2019) Intestinal epithelial tight junction barrier regulation by autophagy-related protein ATG6/beclin 1. Am J Physiol Cell Physiol 316, C753-C765
  17. Zhong Z, Umemura A, Sanchez-Lopez E et al (2016) NF-kappaB restricts inflammasome activation via elimination of damaged mitochondria. Cell 164, 896-910 https://doi.org/10.1016/j.cell.2015.12.057
  18. Iida T, Onodera K and Nakase H (2017) Role of autophagy in the pathogenesis of inflammatory bowel disease. World J Gastroenterol 23, 1944-1953 https://doi.org/10.3748/wjg.v23.i11.1944
  19. Ko JH, Yoon SO, Lee HJ and Oh JY (2017) Rapamycin regulates macrophage activation by inhibiting NLRP3 inflammasome-p38 MAPK-NFkappaB pathways in autophagy-and p62-dependent manners. Oncotarget 8, 40817-40831 https://doi.org/10.18632/oncotarget.17256
  20. Yan Y, Jiang W, Liu L et al (2015) Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160, 62-73 https://doi.org/10.1016/j.cell.2014.11.047
  21. Chiu HW, Chen CH, Chang JN, Chen CH and Hsu YH (2016) Far-infrared promotes burn wound healing by suppressing NLRP3 inflammasome caused by enhanced autophagy. J Mol Med (Berl) 94, 809-819 https://doi.org/10.1007/s00109-016-1389-0
  22. Li Y, Zhang L, Zhou J et al (2015) Nedd4 E3 ubiquitin ligase promotes cell proliferation and autophagy. Cell Prolif 48, 338-347 https://doi.org/10.1111/cpr.12184
  23. Lopez-Castejon G (2020) Control of the inflammasome by the ubiquitin system. FEBS J 287, 11-26 https://doi.org/10.1111/febs.15118
  24. Ruiz PA, Moron B, Becker HM et al (2017) Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome. Gut 66, 1216-1224 https://doi.org/10.1136/gutjnl-2015-310297
  25. Zaki MH, Boyd KL, Vogel P, Kastan MB, Lamkanfi M and Kanneganti TD (2010) The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity 32, 379-391 https://doi.org/10.1016/j.immuni.2010.03.003
  26. Rera M, Clark RI and Walker DW (2012) Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. Proc Natl Acad Sci U S A 109, 21528-21533 https://doi.org/10.1073/pnas.1215849110
  27. Liu L, Guo X, Rao JN et al (2009) Polyamines regulate E-cadherin transcription through c-Myc modulating intestinal epithelial barrier function. Am J Physiol Cell Physiol 296, C801-810 https://doi.org/10.1152/ajpcell.00620.2008
  28. Song X, He X, Li X and Qian Y (2016) The roles and functional mechanisms of interleukin-17 family cytokines in mucosal immunity. Cell Mol Immunol 13, 418-431 https://doi.org/10.1038/cmi.2015.105