• Title/Summary/Keyword: Epitaxy Growth

Search Result 490, Processing Time 0.034 seconds

Hot-wall epitaxial growth and characteristic of CdTe films (Hot-wall epitaxy법에 의한 CdTe 박막의 성장과 특성)

  • 박효열;조재혁;진광수;황영훈
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.4
    • /
    • pp.140-144
    • /
    • 2004
  • CdTe thin films were grown on GaAs (100) substrates by hot wall epitaxy method. From the XRD measurements, it was found that CdTe/GaAs (100) film was grown as a single crystals with the different from growth plane of (III), and growth rate of CdTe thin films was found to be 30 $\AA/sec$ by SEM. To acquire a high quality CdTe thin film, the optimum temperature for the source and substrate are found to be $500^{\circ}C$ and $320^{\circ}C$, respectively, which was checked by PL.

Selectrive Liquid Phase Epitaxy of GaAs` Kinetics and MOrphology (비소화칼륨의 선택적 액상 에피층 성장;성장기구 및 형태)

  • Kim, Sang Bae;Kwon, Young Se
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.6
    • /
    • pp.820-832
    • /
    • 1986
  • In contrast to conventional liquid phase epitaxy of GaAs, surface kinetics limited growth is predominant in selective liquid phase epitaxy. For the stripe openings in the high-index crystal-lographic directions, the well-known facet formations and the decompositions into the low index planes or smooth circular surfaces are observed depending on the growth kinetics. For the low index direction stripe, surface kinetics limited growth is evident. By a numerical calcualtion we show that these phenomena are due to the enhanced masstransport by two dimensional diffusion and growth rate anisotropy which is found to be very stdrong with cusped minima for some singular planes in the solution growth as well as in vapor phase epitaxy. Morphological stability is briefly treated in terms of diffusion and its implications on device application are stated. Tese phenomena may be common to III-V compound semiconductors as well as GaAs.

  • PDF

Selective Epitaxy Growth of Multiple-Stacked InP/InGaAs on the Planar Type by Chemical Beam Epitaxy (화학적 빔 에피탁시에 의한 평면구조에서의 InP/InGaAs 다층구조의 선택적 영역 에피 성장)

  • Han, Il-Ki;Lee, Jung-Il
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.6
    • /
    • pp.468-473
    • /
    • 2009
  • Selective area epitaxy of multiple-stacked InP/InGaAs structures were grown by chemical beam epitaxy. The width of top of the multiple-stacked InP/InGaAs layer which were selectively grown on the stripe lines parallel to the <011> direction was narrowed, while the width of top of the multiple-stacked InP/InGaAs layer on the stripe lines parallel to the <01-1> was widen. This difference according to the <011> and <01-1> direction was explained by the growth of InGaAs <311>A and B faces on the (100) InP surface on the stripe lines parallel to the <01-1> direction. Under growth rate of $1\;{\mu}m/h$, top of the multiple-stacked InP/InGaAs was flattened as the pressure of group V gas was decreased. This phenomenon was understood by the saturation of group V element on the surface.

Facet Growth of InGaAs on GaAs(100) by Chemical Beam Epitaxy Using Unprecracked Monoethylarsine (GaAs(100) 기판에 사전 열분해하지 않은 Monoethylarsine을 사용하는 Chemical Beam Epitaxy방법에 의한 InGaAs박막의 Facet 성장에 관한 연구)

  • 김성복;박성주;노정래;이일항
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.3
    • /
    • pp.199-205
    • /
    • 1996
  • InGaAs eqitaxial layers have been selectively grown on patterned GaAs(100) substrates by chemical beam epitaxy (CBE) using triethylgallium (TEGa), trimethylindium (TMIn), and unprecracked monoethylarsine (MEAs). Facet growth of InGaAs epilayers has also been investigated at the various growth temperatures and Si4N4 dielectric pattern directions. In [011] jirection of mask, the change from (311), (377) and (111) facets to (311) facet with increasing growth temperature was observed. In [011] direction, however, the change from (011) and (111) facets to (111) facet with increasing growth temperature was observed. These results are attributed to the sidewall growth caused by different surface migration lengths of reactants. The formation of U-shaped (100) top surface is also discussed in terms of dangling bond model.

  • PDF

Epitaxial Growth of MgO and CoFe/MgO on Ge(001) Substrates by Molecular Beam Epitaxy

  • Jeon, Kun-Rok;Park, Chang-Yup;Shin, Sung-Chul
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2009.12a
    • /
    • pp.190-190
    • /
    • 2009
  • We report the epitaxial growth of MgO and CoFe/MgO on Ge (001) substrates using molecular beam epitaxy. It was found that the epitaxial growth of a MgO film on Ge could be realized at a low growth temperature of $125{\pm}5^{\circ}C$ and the MgO matches the Ge with a cell ratio of $\sqrt{2}$:1 which renders MgO rotated by $45^{\circ}$ relative to Ge. In-situ and ex-situ structural characterizations reveal the epitaxial crystal growth of bcc CoFe/MgO on Ge with the in-plane crystallographic relationship of CoFe(001)[100] || MgO(001)[110] || Ge(001)[100], exhibiting sharp interfaces in the (001) matching planes. The saturation magnetization of the sample is $1430{\pm}20$ emu/cc, which is comparable to the value of bulk CoFe.

  • PDF

Growth and Magnetic Characteristics of MnSb Epilayer by Hot-Wall Epitaxy (Hot-Wall Epitaxy에 의한 MnSb 박막의 성장과 자기적 특성)

  • Lee, Man-Young
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.22 no.2
    • /
    • pp.151-162
    • /
    • 2004
  • MnSb layers were grown on GaAs(100), (111)A and (111)B substrates by hot wall epitaxy under various growth conditions. Growth condition dependence of structural properties of the layers was examined. The growth direction and structural properties of MnSb/GaAs(100) depend on Sb source and substrate temperatures. The smooth MnSb(10.1)/GaAs(100) interface was obtained under the appropriate growth condition. On the other hand, MnSb(00.1) layers were grown on GaAs(111) substrates. The quality of the layers on (111)B was superior to that on GaAs(111)A, but degraded as in increasing Sb source temperature during the growth. The $Mn_2Sb$ domain was generated in the layers grown under conditions of low Sb source temperature and high substrate temperature on GaAs(111) substrates.

  • PDF

Growth of GaN on ZnO Substrate by Hydride Vapor-Phase Epitaxy (ZnO 기판 위에 Hydride Vapor-Phase Epitaxy법에 의한 GaN의 성장)

  • Jo, Seong-Ryong;Kim, Seon-Tae
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.304-307
    • /
    • 2002
  • A zinc oxide (ZnO) single crystal was used as a substrate in the hydride vapor-phase epitaxy (HVPE) growth of GaN and the structural and optical properties of GaN layer were characterized by x- ray diffraction, transmission electron microscopy, secondary ion mass spectrometry, and photoluminescence (PL) analysis. Despite a good lattice match and an identical structure, ZnO is not an appropriate substrate for application of HVPE growth of GaN. Thick film could not be grown. The substrate reacted with process gases and Ga, being unstable at high temperatures. The crystallinity of ZnO substrate deteriorated seriously with growth time, and a thin alloy layer formed at the growth interface due to the reaction between ZnO and GaN. The PL from a GaN layer demonstrated the impurity contamination during growth possibly due to the out-diffusion from the substrate.

Metal-Organic Vapor Phase Epitaxy III. Atomic Layer Epitaxy (MOVPE 단결정층 성장법 III. 원자층 성장법)

  • 정원국
    • Journal of the Korean institute of surface engineering
    • /
    • v.23 no.4
    • /
    • pp.197-207
    • /
    • 1990
  • Atomic layer epitaxy is a relatively new epitaxial pprocess chracterized by the alternate and separate exposure of a susbstrate surface to the reactants contaning the constituent element of a compound semicoductror. The ideal ALE is expected to provide sevral advantageous as petcts for growing complicated heterostrutures such as relativly easy controls of the layer thinkness down to a monolayer and in forming abrupt heterointerfaces though monolayer self-saturatio of the growth. In addition, since ALE is stongly dependent on the surface reaction, the growth can also be controlled by photo-excitation which provides activation can be energies for each step of the reaction paths. The local growth acceleration by photo-excitation can be exploited for growing several device strures on the same wafer, which provides another important practical advantage. The ALE growth of GaAs has advanced to the point the laser opertion has been achieved from AlGs/GaAs quantun well structures where thee active layers were grown by thermal and Ar-laser assisted ALE. The status of the ALE growth of GaAs and other III-V compounds will be reviewed with respect to the growth saturation behavior and the electrical properties of the grown crystals.

  • PDF

Growth Characteristics of AlN by Plasma-Assisted Molecular Beam Epitaxy with Different Al Flux (플라즈마분자선에피탁시법을 이용한 알루미늄 플럭스 변화에 따른 질화알루미늄의 성장특성)

  • Lim, Se Hwan;Lee, Hyosung;Shin, Eun-Jung;Han, Seok Kyu;Hong, Soon-Ku
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.539-544
    • /
    • 2012
  • We have grown AlN nanorods and AlN films using plasma-assisted molecular beam epitaxy by changing the Al source flux. Plasma-assisted molecular beam epitaxy of AlN was performed on c-plane $Al_2O_3$ substrates with different levels of aluminum (Al) flux but with the same nitrogen flux. Growth behavior of AlN was strongly affected by Al flux, as determined by in-situ reflection high energy electron diffraction. Prior to the growth, nitridation of the $Al_2O_3$ substrate was performed and a two-dimensionally grown AlN layer was formed by the nitridation process, in which the epitaxial relationship was determined to be [11-20]AlN//[10-10]$Al_2O_3$, and [10-10]AlN//[11-20]$Al_2O_3$. In the growth of AlN films after nitridation, vertically aligned nanorod-structured AlN was grown with a growth rate of $1.6{\mu}m/h$, in which the growth direction was <0001>, for low Al flux. However, with high Al flux, Al droplets with diameters of about $8{\mu}m$ were found, which implies an Al-rich growth environment. With moderate Al flux conditions, epitaxial AlN films were grown. Growth was maintained in two-dimensional or three-dimensional growth mode depending on the Al flux during the growth; however, final growth occurred in three-dimensional growth mode. A lowest root mean square roughness of 0.6 nm (for $2{\mu}m{\times}2{\mu}m$ area) was obtained, which indicates a very flat surface.

Potential for Novel Magnetic Structures by Nanowire Growth Mechanisms

  • Lapierre R.R.;Plante M.C.
    • Journal of Magnetics
    • /
    • v.10 no.3
    • /
    • pp.108-112
    • /
    • 2005
  • GaAs nanowires were grown on GaAs (111)B substrates in a gas source molecular beam epitaxy system, using self-assembled Au particles with diameters between 25 and 200 nm as the catalytic agents. The growth rate and structure of the nanowires were investigated for substrate temperatures between 500 and $600^{\circ}C$ to study the mass transport mechanisms that drive the growth of these crystals. The possibilities for fabrication of novel magnetic nanostructures by suitable choice of growth conditions are discussed.