• 제목/요약/키워드: Epigenetic

검색결과 439건 처리시간 0.054초

Genomics Approach to Identify the Cause of the Missing Omega-5 Gliadin Protein in O-Free Wheat

  • Lee, Yun Gyeong;Choi, Sang Chul;Kang, Yuna;Kang, Chon-Sik;Kim, Changsoo
    • Plant Breeding and Biotechnology
    • /
    • 제6권4호
    • /
    • pp.413-425
    • /
    • 2018
  • A previous work developed and identified a new omega-5 gliadin deficient wheat line named O-free by crossing Keumkang and Olgeuru, which is nutritionally quite meaningful in that omega-5 gliadin is one of the known wheat allergens. To verify the characteristics of the O-free, we performed RNA sequencing (RNAseq) analysis of the O-free and the two parent lines (Keumkang and Olgeuru). The results of the similarity analysis with the ESTs for gliadins and glutenins showed that the O-free ESTs had no similarity with the omega-5 gliadin sequences but had similarity to other gliadins and glutenins. Furthermore, mapping results between the raw RNAseq data from the O-free and the omega-5 gliadin sequence showed a clear deletion of the N-terminal sequences which are an important signature of omega-5 gliadin. We also designed specific PCR primers that could identify omega-5 gliadin in the genomic DNA. The results showed that no omega-5 gliadin fragments were detected in the O-free. According to these results, we confirmed that the deficiency of omega-5 gliadin in the O-free is not caused by post-transcriptional or post-translational regulations such as epigenetic phenomena but by a simple deletion in the chromosome. Furthermore, we showed that the low-molecular weight glutenin subunit (LMW-GS) gene in the O-free had a single nucleotide polymorphism (SNP) causing a premature stop codon, resulting in a truncated polypeptide. We expect that the O-free line may serve as an excellent source of wheat that could prevail in the hypo-allergen wheat market, which has recently gained interest world-wide.

Enhanced anticancer effects of a methylation inhibitor by inhibiting a novel DNMT1 target, CEP 131, in cervical cancer

  • Kim, Dong Hyun;Kim, Hye-Min;Huong, Pham Thi Thu;Han, Ho-Jin;Hwang, Joonsung;Cha-Molstad, Hyunjoo;Lee, Kyung Ho;Ryoo, In-Ja;Kim, Kyoon Eon;Huh, Yang Hoon;Ahn, Jong Seog;Kwon, Yong Tae;Soung, Nak-Kyun;Kim, Bo Yeon
    • BMB Reports
    • /
    • 제52권5호
    • /
    • pp.342-347
    • /
    • 2019
  • Methylation is a primary epigenetic mechanism regulating gene expression. 5-aza-2'-deoxycytidine is an FDA-approved drug prescribed for treatment of cancer by inhibiting DNA-Methyl-Transferase 1 (DNMT1). Results of this study suggest that prolonged treatment with 5-aza-2'-deoxycytidine could induce centrosome abnormalities in cancer cells and that CEP131, a centrosome protein, is regulated by DNMT1. Interestingly, cancer cell growth was attenuated in vitro and in vivo by inhibiting the expression of Cep131. Finally, Cep131-deficient cells were more sensitive to treatment with DNMT1 inhibitors. These findings suggest that Cep131 is a potential novel anti-cancer target. Agents that can inhibit this protein may be useful alone or in combination with DNMT1 inhibitors to treat cancer.

Identification of Serial DNA Methylation Changes in the Blood Samples of Patients with Lung Cancer

  • Moon, Da Hye;Kwon, Sung Ok;Kim, Woo Jin;Hong, Yoonki
    • Tuberculosis and Respiratory Diseases
    • /
    • 제82권2호
    • /
    • pp.126-132
    • /
    • 2019
  • Background: The development of lung cancer results from the interaction between genetic mutations and dynamic epigenetic alterations, although the exact mechanisms are not completely understood. Changes in DNA methylation may be a promising biomarker for early detection and prognosis of lung cancer. We evaluated the serial changes in genome-wide DNA methylation patterns in blood samples of lung cancer patients. Methods: Blood samples were obtained for three consecutive years from three patients (2 years before, 1 year before, and after lung cancer detection) and from three control subjects (without lung cancer). We used the MethylationEPIC BeadChip method, which covers the 850,000 bp cytosine-phosphate-guanine (CpG) site, to conduct an epigenome-wide analysis. Significant differentially methylated regions (DMRs) were identified using p-values <0.05 in a correlation test identifying serial methylation changes and serial increase or decrease in ${\beta}$ value above 0.1 for three consecutive years. Results: We found three significant CpG sites with differentially methylated ${\beta}$ values and 7,105 CpG sites with significant correlation from control patients without lung cancer. However, there were no significant DMRs. In contrast, we found 11 significant CpG sites with differentially methylated ${\beta}$ values and 10,562 CpG sites with significant correlation from patients with lung cancer. There were two significant DMRs: cg21126229 (RNF212) and cg27098574 (BCAR1). Conclusion: This study revealed DNA methylation changes that might be implicated in lung cancer development. The DNA methylation changes may be the possible candidate target regions for the early detection and prevention of lung cancer.

An Optimized Method for the Construction of a DNA Methylome from Small Quantities of Tissue or Purified DNA from Arabidopsis Embryo

  • Yoo, Hyunjin;Park, Kyunghyuk;Lee, Jaehoon;Lee, Seunga;Choi, Yeonhee
    • Molecules and Cells
    • /
    • 제44권8호
    • /
    • pp.602-612
    • /
    • 2021
  • DNA methylation is an important epigenetic mechanism affecting genome structure, gene regulation, and the silencing of transposable elements. Cell- and tissue-specific methylation patterns are critical for differentiation and development in eukaryotes. Dynamic spatiotemporal methylation data in these cells or tissues is, therefore, of great interest. However, the construction of bisulfite sequencing libraries can be challenging if the starting material is limited or the genome size is small, such as in Arabidopsis. Here, we describe detailed methods for the purification of Arabidopsis embryos at all stages, and the construction of comprehensive bisulfite libraries from small quantities of input. We constructed bisulfite libraries by releasing embryos from intact seeds, using a different approach for each developmental stage, and manually picking single-embryo with microcapillaries. From these libraries, reliable Arabidopsis methylome data were collected allowing, on average, 11-fold coverage of the genome using as few as five globular, heart, and torpedo embryos as raw input material without the need for DNA purification step. On the other hand, purified DNA from as few as eight bending torpedo embryos or a single mature embryo is sufficient for library construction when RNase A is treated before DNA extraction. This method can be broadly applied to cells from different tissues or cells from other model organisms. Methylome construction can be achieved using a minimal amount of input material using our method; thereby, it has the potential to increase our understanding of dynamic spatiotemporal methylation patterns in model organisms.

Adverse Effect of Nonylphenol on the Reproductive System in F2 Male Mice : A Qualitative Change?

  • Kim, Yong-Bin;Cheon, Yong-Pil;Choi, Donchan;Lee, Sung-Ho
    • 한국발생생물학회지:발생과생식
    • /
    • 제23권3호
    • /
    • pp.255-262
    • /
    • 2019
  • Previously, we reported negative effects of low-dose nonylphenol (NP) exposure on the reproductive organs of F1 male mice. In the present study was further investigated the endocrine disrupting effect of NP exposure to F2 generation male mice. Mice were divided into 2 groups; (1) CON, control animals and (2) NP-50 ($50{\mu}g/L$), animals were treated with NP via drinking water. NP exposures were continuously conducted from parental pre-mating period until the postnatal day (PND) 55 of F2 offsprings. Mice were sacrificed on PND 55 and the reproductive tissue weights were measured. The initial (at PND 21) and terminal (PND 55) body weights of the NP-50 group animals were not significantly different from those of control group animals. NP exposure fail to induce a significant weight change of the testes, seminal vesicle and prostate except absolute epididymal weight (p<0.05). However, pathohistological studies revealed that NP-treated F2 animals showed evident decrease in seminiferous tubule diameters, reduced luminal area and number of germ cells. Also, sloughing morphologies in the tubules were notable. In the caudal epididymis, fewer mature sperms and swollen epithelial cells were found in the NP-treated group. The present study demonstrated that the subchronic low-dose NP exposure induced pathohistological abnormalities in testis and epididymis of F2 mice, and we assumed that these 'qualitative' changes in reproductive tissues could be derived from the epigenetic modifications such as DNA methylation, histone modification, altered DNA accessibility and chromatin structure. Further studies are needed to achieve a better understanding on the multi- or trans-generational effects of NP on the reproductive health and a human application.

MLL5, a histone modifying enzyme, regulates androgen receptor activity in prostate cancer cells by recruiting co-regulators, HCF1 and SET1

  • Lee, Kyoung-Hwa;Kim, Byung-Chan;Jeong, Chang Wook;Ku, Ja Hyeon;Kim, Hyeon Hoe;Kwak, Cheol
    • BMB Reports
    • /
    • 제53권12호
    • /
    • pp.634-639
    • /
    • 2020
  • In prostate cancer, the androgen receptor (AR) transcription factor is a major regulator of cell proliferation and metastasis. To identify new AR regulators, we focused on Mixed lineage leukemia 5 (MLL5), a histone-regulating enzyme, because significantly higher MLL5 expression was detected in prostate cancer tissues than in matching normal tissues. When we expressed shRNAs targeting MLL5 gene in prostate cancer cell line, the growth rate and AR activity were reduced compared to those in control cells, and migration ability of the knockdown cells was reduced significantly. To determine the molecular mechanisms of MLL5 on AR activity, we proved that AR physically interacted with MLL5 and other co-factors, including SET-1 and HCF-1, using an immunoprecipitation method. The chromatin immunoprecipitation analysis showed reduced binding of MLL5, co-factors, and AR enzymes to AR target gene promoters in MLL5 shRNA-expressing cells. Histone H3K4 methylation on the AR target gene promoters was reduced, and H3K9 methylation at the same site was increased in MLL5 knockdown cells. Finally, xenograft tumor formation revealed that reduction of MLL5 in prostate cancer cells retarded tumor growth. Our results thus demonstrate the important role of MLL5 as a new epigenetic regulator of AR in prostate cancer.

SUV39H1 is a New Client Protein of Hsp90 Degradated by Chaetocin as a Novel C-Terminal Inhibitor of Hsp90

  • Lian, Bin;Lin, Qian;Tang, Wei;Qi, Xin;Li, Jing
    • Biomolecules & Therapeutics
    • /
    • 제29권1호
    • /
    • pp.73-82
    • /
    • 2021
  • Hsp90 is often overexpressed with activated form in cancer cells, and many key cellular proteins are dependent upon the Hsp90 machinery (these proteins are called "client protein"). Nowadays, more client proteins and more inhibitors of Hsp90 are being discovered. Chaetocin has been identified as an inhibitor of histone methyl transferase SUV39H1. Herein, we find that Chaetocin is an inhibitor of Hsp90 which binds to the C-terminal of Hsp90α. Chaetocin inhibited a variety of Hsp90 client proteins including AMl1-ETO and BCL-ABL, the mutant fusion-protein in the K562 and HL-60 cells. SUV39H1 mediates epigenetic events in the pathophysiology of hematopoietic disorders. We found that inhibition of Hsp90 by Chaetocin and 17-AAG had ability to induce degradation of SUV39H1 through proteasome pathway. In addition, SUV39H1 interacted with Hsp90 through co-chaperone HOP. These results suggest that SUV39H1 belongs to a client protein of Hsp90. Moreover, Chaetocin was able to induce cell differentiation in the two cells in the concentration range of Hsp90 inhibition. Altogether, our results demonstrate that SUV39H1 is a new client protein of Hsp90 degradated by Chaetocin as a novel C-terminal inhibitor of Hsp90. The study establishes a new relationship of Chaetocin and SUV39H1, and paves an avenue for exploring a new strategy to target SUV39H1 by inhibition of Hsp90 in leukemia.

KAT8/MOF-Mediated Anti-Cancer Mechanism of Gemcitabine in Human Bladder Cancer Cells

  • Zhu, Huihui;Wang, Yong;Wei, Tao;Zhao, Xiaoming;Li, Fuqiang;Li, Yana;Wang, Fei;Cai, Yong;Jin, Jingji
    • Biomolecules & Therapeutics
    • /
    • 제29권2호
    • /
    • pp.184-194
    • /
    • 2021
  • Histone acetylation is a well-characterized epigenetic modification controlled by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Imbalanced histone acetylation has been observed in many primary cancers. Therefore, efforts have been made to find drugs or small molecules such as HDAC inhibitors that can revert acetylation levels to normal in cancer cells. We observed dose-dependent reduction in the endogenous and exogenous protein expression levels of KAT8 (also known as human MOF), a member of the MYST family of HATs, and its corresponding histone acetylation at H4K5, H4K8, and H4K16 in chemotherapy drug gemcitabine (GEM)-exposed T24 bladder cancer (BLCA) cells. Interestingly, the reduction in MOF and histone H4 acetylation was inversely proportional to GEM-induced γH2AX, an indicator of chemotherapy drug effectiveness. Furthermore, pGL4-MOF-Luc reporter activities were significantly inhibited by GEM, thereby suggesting that GEM utilizes an MOF-mediated anti-BLCA mechanism of action. In the CCK-8, wound healing assays and Transwell® experiments, the additive effects on cell proliferation and migration were observed in the presence of exogenous MOF and GEM. In addition, the promoted cell sensitivity to GEM by exogenous MOF in BLCA cells was confirmed using an Annexin V-FITC/PI assay. Taken together, our results provide the theoretical basis for elucidating the anti-BLCA mechanism of GEM.

Genetic factors in precocious puberty

  • Shim, Young Suk;Lee, Hae Sang;Hwang, Jin Soon
    • Clinical and Experimental Pediatrics
    • /
    • 제65권4호
    • /
    • pp.172-181
    • /
    • 2022
  • Pubertal onset is known to result from reactivation of the hypothalamic-pituitary-gonadal (HPG) axis, which is controlled by complex interactions of genetic and nongenetic factors. Most cases of precocious puberty (PP) are diagnosed as central PP (CPP), defined as premature activation of the HPG axis. The cause of CPP in most girls is not identifiable and, thus, referred to as idiopathic CPP (ICPP), whereas boys are more likely to have an organic lesion in the brain. ICPP has a genetic background, as supported by studies showing that maternal age at menarche is associated with pubertal timing in their offspring. A gain of expression in the kisspeptin gene (KISS1), gain-of-function mutation in the kisspeptin receptor gene (KISS1R), loss-of-function mutation in makorin ring finger protein 3 (MKRN3), and loss-of-function mutations in the delta-like homolog 1 gene (DLK1) have been associated with ICPP. Other genes, such as gamma-aminobutyric acid receptor subunit alpha-1 (GABRA1), lin-28 homolog B (LIN28B), neuropeptide Y (NPYR), tachykinin 3 (TAC3), and tachykinin receptor 3 (TACR3), have been implicated in the progression of ICPP, although their relationships require elucidation. Environmental and socioeconomic factors may also be correlated with ICPP. In the progression of CPP, epigenetic factors such as DNA methylation, histone posttranslational modifications, and non-coding ribonucleic acids may mediate the relationship between genetic and environmental factors. CPP is correlated with short- and long-term adverse health outcomes, which forms the rationale for research focusing on understanding its genetic and nongenetic factors.

Exosomes: Nomenclature, Isolation, and Biological Roles in Liver Diseases

  • Seol Hee Park;Eun Kyeong Lee;Joowon Yim;Min Hoo Lee;Eojin Lee;Young-Sun Lee;Wonhyo Seo
    • Biomolecules & Therapeutics
    • /
    • 제31권3호
    • /
    • pp.253-263
    • /
    • 2023
  • The biogenesis and biological roles of extracellular vesicles (EVs) in the progression of liver diseases have attracted considerable attention in recent years. EVs are membrane-bound nanosized vesicles found in different types of body fluids and contain various bioactive materials, including proteins, lipids, nucleic acids, and mitochondrial DNA. Based on their origin and biogenesis, EVs can be classified as apoptotic bodies, microvesicles, and exosomes. Among these, exosomes are the smallest EVs (30-150 nm in diameter), which play a significant role in cell-to-cell communication and epigenetic regulation. Moreover, exosomal content analysis can reveal the functional state of the parental cell. Therefore, exosomes can be applied to various purposes, including disease diagnosis and treatment, drug delivery, cell-free vaccines, and regenerative medicine. However, exosome-related research faces two major limitations: isolation of exosomes with high yield and purity and distinction of exosomes from other EVs (especially microvesicles). No standardized exosome isolation method has been established to date; however, various exosome isolation strategies have been proposed to investigate their biological roles. Exosome-mediated intercellular communications are known to be involved in alcoholic liver disease and nonalcoholic fatty liver disease development. Damaged hepatocytes or nonparenchymal cells release large numbers of exosomes that promote the progression of inflammation and fibrogenesis through interactions with neighboring cells. Exosomes are expected to provide insight on the progression of liver disease. Here, we review the biogenesis of exosomes, exosome isolation techniques, and biological roles of exosomes in alcoholic liver disease and nonalcoholic fatty liver disease.