• Title/Summary/Keyword: Enzyme engineering

Search Result 1,589, Processing Time 0.025 seconds

Cloning and Characterization of a Gene for Fibrinolytic Enzyme from Bacillus subtilis BB-1 Isolated from Black Bean Chung-kuk (흑두로 제조한 청국에서 분리된 Bacillus subtillus BB-1으로 부터 혈전용해효소 유전자 크로닝 및 특성규명)

  • Lee Young-Hoon;Lee Sung-Ho;Jeon Ju-Mi;Kim Hong-Chul;Cho Yong-Un;Park Ki-Hoon;Choi Young-Ju;Gal Sang-Wan
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.513-521
    • /
    • 2005
  • A bacterium producing five fibrinolytic isozymes was isolated from black bean chung kuk. The bacterium was identified as Bacillus subtilis BB-1 by 16s rDNA sequence homology search. A gene out of five fibrinolytic genes in the Bacillus subtilis BB-1 was cloned by shot-gun method. A Cla I DNA fragment of B. subtilis BB-1 chromosome was cloned in to pBluescript II SK(-) and showed the fibrinolytic activity to bacterial cells. The Cla I DNA fragment was sequenced and the sequences did not show homology with gene for protease or fibrinolytic enzyme genes in other organisms. The Cla I DNA fragment was reduced to 2,142 bp by activity-guided PCR cloning method. The optimum pH and temperature of the enzyme were 5.0 and $35^{\circ}C$, respectively. Substrate specificity of the fibrinolytic enzyme was detected in skim milk, casein, gelatin and blood agar plates. The activity of the enzyme was not detected with these substrates. Taken together, this enzyme is a new fibrinolytic enzyme and may be used to prevent thrombosis and arteriosclerosis.

Development of Nanoenzymes for the Production of Glucose from Seaweed and Various Polysaccharide (해조류 및 다당류로부터 포도당 생산을 위한 나노효소 개발 및 특성)

  • Jin, Lie-Hua;Lee, Jung-Heon
    • KSBB Journal
    • /
    • v.25 no.5
    • /
    • pp.453-458
    • /
    • 2010
  • The magnetically separable polyaniline nanofiber enzymes were developed for the recycle of enzyme and enhanced enzyme stability. The stability of enzyme was maintained over 90% for 8 days under room temperature and vigorous shaking conditions (200 rpm). The residual activity of immobilized enzyme was over 60% after 8 days incubation at $55^{\circ}C$. Glucose was produced from various polysaccharides, agarose, curdlan, cellulose, and sea weed, using magnetically separable immobilized enzyme. Glucose production rate with curdlan was 1.2 g/(l h) and showed high decomposition rate due to high mass transfer. After 10 times recycle, the residual activity of immobilized enzyme was over 75%. 1 g/L of glucose was produced with 5 mg of immobilized enzymes.

한국재래메주에서 분리한 Scopulariopsis brevicaulis가 생성하는 Protease의 특성 및 작용양상

  • Choi, Cheong;Choi, Kwang-Soo;Kim, Sung;Lee, Seon-Ho;Son, Jun-Ho;Choi, Hee-Jin;Lee, Sang-Seon;An, Bong-Jeon
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.1
    • /
    • pp.56-61
    • /
    • 1997
  • An alkaline protease producing microorganism was isolated from korean traditional Meju and identified as Scopulariopsis brevicaulis. The optimum culture condition of Scopulariopsis brevicaulis for the production of alkaline protease was as follow: 2% soluble starch, 0.2$, tryptophan, 0.1% (NH$_{4}$) $_{2}$S$_{2}$O$_{8}$ 0.2% NaHPO$_{4}$, pH 7.5, 35$\CIRC $C. The optimum pH and temperature for the enzyme activity of alkaline protease producing Scopulariopsis brevicaulis were pH 9.0 and 50$\circ $C, respectively. The enzyme was relatively stable at pH 6.0~11.0 and at temperature below 40$\circ $C. The activity of the enzyme was inhibited by Hg$^{2+}$ whereas Cu$^{2+}$ gave rather activating effects on the enzyme activity. Phenylmethanesulfonyl fluoride inhibited the enzyme activity. This result indicates that serine is very important role in this enzyme. Km value for casein was 1.2410$^{4}$ M/L, V$_{max}$ value for casein was 25.99 $\mu $g/min. This enzyme hydrolyzed casein more rapidly than the hemoglobin.

  • PDF

Purification and Characterization of Streptococcus mutans Cell Wall Hydrolase from Bacillus subtilis YL-1004

  • OHK, SEUNG-HO;YUN-JUNG YOO;DONG-HOON BAI
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.957-963
    • /
    • 2001
  • Bacillus subtilis YL-1004 was isolated from soil for the development of agents to control dental caries. This strain produced an extracellular lytic enzyme that hydrolyzed the Streptococcus mutans cell wall. The lytic enzyme was purified to homogeneity by affinity chromatography and gel permeation chromatography to give a single band on SDS-PAGE and non-denaturing polyacrylamide gel electrophoresis. The molecular weight of the enzyme was deduced from SDS-PAGE and gel chromatography to be 38 kDa and the PI to be 4.3 from isoelectric focusing. Sirty $\%$ of its lytic activity remained after incubation at $50^{\circ}C$ for 30 min, and its optimal temperature was $37^{\circ}C$ . The enzyme showed its highest activity at pH 8.0 and was stable at pHs ranging from 4.0 to 9.0. Treatment with several modifiers showed that a cysteine residue was involved in the active site of the enzyme. This lytic enzyme from Bacillus subtilis YL-1004 exhibited specificity towards Streptococci and also showed autolytic activity on Bacillus subtilis YL-1004.

  • PDF

Pretreatment Process for Production of the Gromwell Colorants Powder (자초 분말 염료 제조를 위한 전처리 공정 연구)

  • Choi, Min;Yoo, Dong-Il;Shin, Youn-Sook
    • Textile Coloration and Finishing
    • /
    • v.24 no.1
    • /
    • pp.18-26
    • /
    • 2012
  • In this work, colorants extraction process from gromwell was studied for making powder form of colorants by solving the high viscosity problem of gromwell extracts. In order to do that, sugar extracted together with colorants must be pre-extracted. For sugar decomposition, gromwell roots were pretreated with various enzyme solutions. The total sugar content of pre-extract with enzyme solution was measured. Accordingly, the effects of enzyme type and pretreatment condition on sugar decomposition were investigated to find appropriate enzyme(amylase, hemicellulase, pectinase) and enzyme activity (100~1000unit), pre-extracted time(3~24hr). Color characteristics and dye uptake of dyed fabrics were evaluated. Gromwell colorants were assessed for their potential antimicrobial activities, which possibly expand their end use as functional pigments. The efficiency of removing sugar was increased in the order of hemicellulase, pectinase, amylase, $H_2O$. Gromwell colorants powder yield was in the range of 4.4% to 9.8% depending on pretreatment enzyme. Gromwell colorants produced RP color on the silk and wool fabrics with good dye uptake. Antimicrobial activity of gromwell colorants will greatly increase its potentiality for applying as functional natural colorants in the future.

Characterization of 1,4-Benzoquinone Reductase from Bovine Liver

  • Kim, Kyungsoon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.4
    • /
    • pp.216-220
    • /
    • 2002
  • 1,4-Benzoquinone reductase was purified to electrophoretic homogeneity from bovine liver, and the purified enzyme found to have a molecular mass of 29 kDa, as determined by sodium dodecyl sulfate- polyacrylamide gel electrophoresis The enzyme exhibited pH optimum between 8.0 and 8.5. The apparent fm for 1,4-benzoqulnone was 1.643 mM, and the apparent Km for NADH was 1.837 mM. Various divalent cations, such as Hg$\^$2+/, Cu$\^$2+/, and Zn$\^$2+/, exhibited strong inhibitory effects. The enzyme activity was also strongly inhibited by quercetin, dicumarol, and benzoic acid. Incubation of the enzyme with N-bromosuccinimide and pyridoxal 5’-phosphate led to inhibitions of 100% and 99%, respectively. Accordingly, these results suggest that trypto-phan and Iysine residues are Involved at or near the active sites of the enzyme.

Overproduction, Purification, and Characterization of Bacillus stearothermophilus Endo-xylanase A (XynA)

  • Cho, Ssang Goo;Jung Han Suh;Yong Jin Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.79-85
    • /
    • 1996
  • By using a T7 expression system, a large amount of Bacillus stearothermophilus endo-xylanase A (XynA) could be produced in Escherichia coli cells. The overproduced enzyme formed inclusion bodies, and so the protein could be more easily purified to homogeneity. The molecular weight of the purified enzyme was estimated to be 22 kDa by SDS-polyacrylamide gel electrophoresis and 43 kDa by Sephacryl S-200 gel filtration, suggesting that the native enzyme was a homodimer. The pI value was determined to be 8.4. The Michaelis constants for birchwood xylan and oat spelts xylan were calculated to be 3.83 mg/ml and 5.03 mg/ml, respectively, and the $V_{max}$ max/ values for both xylans were 2.86 $\mu mole$/min. The purified enzyme was most active at $55^{\circ}C$ and pH 8.0, and stable up to $60^{\circ}C$ and in the near neutral pH range. From the zymogram, Bacillus stearothermophilus was found to have at least three xylanases and the purified one was the smallest among them.

  • PDF

In the presence of organic solvent stability of CiP [coprinus cinereus peroxidase] (유기용매에서의 CiP [coprinus cinereus peroxidase]의 안정성)

  • Kim, Han-Sang;Cho, Dae-Haeng;Kim, Yong-Hwan
    • KSBB Journal
    • /
    • v.23 no.4
    • /
    • pp.340-344
    • /
    • 2008
  • Coprinus cinereus peroxidase (CiP) was often used as a catalyst for oxidative polymerization of a variety of phenol derivatives to produce a new class of polyphenols. Economical point of view, to know the mechanism of enzyme deactivation is significantly important because cost of enzyme is critically high. Hydrogen peroxide being used as oxidizing agent induced deactivation of peroxidase by destruction of heme structure. In the presence of hydrogen peroxide the stability of peroxidase was unexpectedly improved by adding organic solvent. Especially 2-propanol significantly improved enzyme stability among tested solvents. Radical scavenging by organic solvents may play a major role in protecting peroxidase from the oxidation of oxidizing radicals.

2,4-Dichlorophenol Enzymatic Removal and Its Kinetic Study Using Horseradish Peroxidase Crosslinked to Nano Spray-Dried Poly(Lactic-Co-Glycolic Acid) Fine Particles

  • Dahili, Laura Amina;Nagy, Endre;Feczko, Tivadar
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.768-774
    • /
    • 2017
  • Horseradish peroxidase (HRP) catalyzes the oxidation of aromatic compounds by hydrogen peroxide via insoluble polymer formation, which can be precipitated from the wastewater. For HRP immobilization, poly(lactic-co-glycolic acid) (PLGA) fine carrier supports were produced by using the Nano Spray Dryer B-90. Immobilized HRP was used to remove the persistent 2,4-dichlorophenol from model wastewater. Both extracted (9-16 U/g) and purified HRP (11-25 U/g) retained their activity to a high extent after crosslinking to the PLGA particles. The immobilized enzyme activity was substantially higher in both the acidic and the alkaline pH regions compared with the free enzyme. Optimally, 98% of the 2,4-dichlorophenol could be eliminated using immobilized HRP due to catalytic removal and partly to adsorption on the carrier supports. Immobilized enzyme kinetics for 2,4-dichlorophenol elimination was studied for the first time, and it could be concluded that competitive product inhibition took place.

Alkaline $\alpha$-amylase Production from Bacillus megaterium

  • Jia, Shiru;Lim, Chae-kyu;Seo, Gwang-Yeob;Nam, Hyung-Gun
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.1
    • /
    • pp.40-46
    • /
    • 2009
  • The enzyme expressed from strain L-49 was 2.01 times higher than that of original strain. Strain L-49 can grow on culture plate with $50{\mu}g/mL$ ampicillin. The synthesis of $\alpha$-amylase was greatly suppressed when strain L-49 was grown on monosaccharide such as glucose and polysaccharide at the same time cell concentration was low. Amylase production was enhanced when the bacterium was grown on starch and dextrin. Among different nitrogen sources tried, yeast extract was found to be the best followed by panpeptone, peptone, meat extract, bean meal, and corn steep liquor. The average rate of enzyme production was enhanced for 3~4 times in fermentation time from 24h to 44h. The sugar uptake rate has also increased. Low oxygen supply rate enhanced the rate of strain propagation but depressed the enzyme production. Hence it is benefit to obtain high enzyme activity that agitation speed maintained not lower than 400r/min and aeration rate maintained greater than 1:1vvm.