• Title/Summary/Keyword: Enzyme Reaction

Search Result 1,947, Processing Time 0.029 seconds

The study of anti-inflammatory effect of Hyeonto-dan extract in RAW 264.7 macrophage (현토단(玄兎丹)의 RAW 264.7 대식 세포에서의 항염증 효과에 관한 연구)

  • Kim, Ma-Ryong;Kang, Ok-Hua;Kong, Ryong;Seo, Yun-Soo;Zhou, Tian;Kim, Sang-A;Kim, Eun-Su;Sin, Min-A;Lee, Young-Seob;Kwon, Dong-Yeul
    • The Korea Journal of Herbology
    • /
    • v.32 no.2
    • /
    • pp.77-85
    • /
    • 2017
  • Objectives : This study aimed to investigate the unknown mechanisms behind the anti- inflammatory activity of Hyeonto-dan(HT) 70% ethanol extract on LPS-stimulated RAW 264.7 cells. Methods : Cells were treated with Hyeonto-dan 1 h prior to addition of 200 ng/mL of LPS. Cell viability was measured by the MTS assay. Nitric oxide levels were determined by the Griess assay. $PGE_2$ were measured using EIA kit. Pro-inflammatory cytokine production was measured by the enzyme-linked immunosorbent assay (ELISA). The expression of COX-2, iNOS, and MAPKs was investigated by Western blot, qRT-PCR. $NF-{\kappa}B$/p65 localization and interaction of the TLR-4 receptor with LPS was examined by immunofluorescence assays. Results : Hyeonto-dan had no cytotoxicity at the measured concentration. Hyeonto-dan inhibited NO production and pro-inflammatory cytokines such as IL-6, $TNF-{\alpha}$, and PGE2 as well as the protein and mRNA expression of iNOS and COX-2. Moreover, Hyeonto-dan inhibited the interaction between LPS and TLR-4 in murine macrophages. It suppressed phosphorylation of extracellular signal-regulated kinase (ERK 1/2), c-jun N-terminal kinase (JNK 1/2) and p38. Finally, it inhibited translocation of $NF-{\kappa}B$ in response to competitive LPS. Conclusions : Based on the results of this study, Hyeonto-dan inhibited the binding of TLR-4 receptor to LPS and inhibited the phosphorylation of extracellular signaling pathway MAPKs. These inhibitory effects are thought that the amount of $NF-{\kappa}B$ delivered to the nucleus was decreased and the inflammatory reaction was prevented by decreasing the production of LPS-induced $PGE_2$, NO, IL-6 and $TNF-{\alpha}$.

Effect of Paeonia Lactiflora Pallas on Atopic Dermatitis-Related Inflammation in HaCaT Cell (작약이 HaCaT 세포에서 아토피 피부염 관련 염증 억제에 미치는 영향)

  • Lee, Hye-In;Kim, Eom Ji;Son, Dongbin;Joo, Byung Duk;Sohn, Youngjoo;Kim, Eun-Young;Jung, Hyuk-Sang
    • Korean Journal of Acupuncture
    • /
    • v.39 no.2
    • /
    • pp.43-53
    • /
    • 2022
  • Objectives : Paeonia lactiflora Pallas (PLP) have been reported to have pharmacological effects such as anti-inflammatory and analgesic. However, it is not yet known whether PLP extract has anti-inflammatory effect on HaCaT cells, human keratinocyte. Methods : To confirm the anti-inflammatory effect of PLP on keratinocyte, TNF-𝛼/IFN-𝛾-stimulated HaCaT cells were used. HaCaT cells were pre-treated with PLP for 1h before stimulation with TNF-𝛼/IFN-𝛾. Then HaCaT cells were stimulated with TNF-𝛼/IFN-𝛾 for 24 h, the cells and media were harvested to measure the inflammatory cytokines levels. Granulocyte-macrophage colony stimulating factor (GM-CSF), monocyte chemoattractant protein-1 (MCP-1), interleukin 1 beta (IL-1𝛽), and TNF-𝛼 were analyzed by enzyme-linked immunosorbent assay (ELISA), and the mRNA expression of thymus and activation-regulated chemokines (TARC), IL-6, and IL-8 were measured by reverse transcription-polymerase chain reaction (RT-PCR). We also investigated the inhibitory mechanism of the mitogen-activated protein kinase (MAPKs) including ERK, JNK, and p38 and nuclear factor-kappaB (NF-𝜅B) by PLP using western blot. Results : PLP did not show cytotoxicity in HaCaT cells. In TNF-𝛼/IFN-𝛾-stimulated HaCaT cells, PLP significantly inhibited the expression of GM-CSF, MCP-1 IL-1𝛽, TNF-𝛼, TARC and IL-6. PLP inhibited the phosphorylation of ERK and translocation of NF-𝜅B into the nucleus. Conclusions : These results indicate that PLP could ameliorate the TNF-𝛼/IFN-𝛾-stimulated inflammatory response through inhibition of MAPK and NF-kB signal pathway. This suggests that PLP could be used beneficial agent to improve skin inflammation.

Cholesterol inhibitory activities of kaempferol and quercetin isolated from Allium victorialis var. platyphyllum (산마늘로부터 단리한 kaempferol과 quercetin의 콜레스테롤 저하 활성)

  • Lee, Sung-Suk;Moon, Seo-Hyun;Lee, Hak-Ju;Choi, Don-Ha;Cho, Myung-Haing
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.17-27
    • /
    • 2004
  • Cholesterol inhibitory activity was investigated to develop the functional food from edible forest resources such as Allium victorialis var. platyphyllum and other 12 species. Among tested samples by enzyme-linked immunosorbant assay (ELISA), leaf extracts of A. victorialis var. platyphyllum inhibited 73.9% of the activities of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) which is the highly regulated and major rate-limiting of the cholesterol biosynthesis pathway. Moreover, those extracts inhibited 76.7% of squalene synthase which catalyzes the head-to-head condensation of two farnesyl pyrophosphate molecules to form squalene in the biosynthesis of cholesterol. In order to find out the compounds which would play a key role in inhibitory activity of cholesterol, kaempferol and quercetin were isolated from the dichloromethane soluble fraction of extracts of A. victorialis var. platyphyllum. Kampferol, quercetin and each soluble fraction was also subjected to the test of the mRNA expression of HMG-CoA reductase and squalene synthase by reverse transcriptase-polymerase chain reaction (RT-PCR) assay, respectively. By treating both enzymes with 10 ㎍/㎖ of kaempferol and quercetin for 24 hours, respectively, the mRNA expression was not observed, suggesting that both compounds inhibited the biosynthesis of cholesterol at mRNA level. In this regard, it could be inferred that cholesterol inhibitory activity of A. victorialis var. platyphyllum was derived from kaempferol and quercetin. Both compounds have already been found in many plant extracts including hardwood and softwood, but it might be first known that they have cholesterol inhibitory activity.

Epidemiological investigation of porcine pseudorabies virus and its coinfection rate in Shandong Province in China from 2015 to 2018

  • Ma, Zicheng;Han, Zifeng;Liu, Zhaohu;Meng, Fanliang;Wang, Hongyu;Cao, Longlong;Li, Yan;Jiao, Qiulin;Liu, Sidang;Liu, Mengda
    • Journal of Veterinary Science
    • /
    • v.21 no.3
    • /
    • pp.36.1-36.9
    • /
    • 2020
  • Background: Pseudorabies, also known as Aujeszky's disease, is caused by the pseudorabies virus (PRV) and has been recognized as a critical disease affecting the pig industry and a wide range of animals around the world, resulting in great economic losses each year. Shandong province, one of the most vital food animal-breeding regions in China, has a very dense pig population, within which pseudorabies infections were detected in recent years. The data, however, on PRV epidemiology and coinfection rates of PRV with other major swine diseases is sparse. Objectives: This study aimed to investigate the PRV epidemiology in Shandong and analyze the current control measures. Methods: In this study, a total number of 16,457 serum samples and 1,638 tissue samples, which were collected from 362 intensive pig farms (≥ 300 sows/farm) covered all cities in Shandong, were tested by performing enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR). Results: Overall, 52.7% and 91.5% of the serum samples were positive for PRV-gE and -gB, respectively, based on ELISA results. In addition, 15.7% of the tissue samples were PCR positive for PRV. The coinfection rates of PRV with porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus, and classical swine fever virus were measured; coinfection with PCV2 was 35.0%, higher than those of the other two viruses. Macroscopic and microscopic lesions were observed in various tissues during histopathological examination. Conclusions: The results demonstrate the PRV prevalence and its coinfection rates in Shandong province and indicate that pseudorabies is endemic in pig farms in this region. This study provides epidemiological data that can be useful in the prevention and control of pseudorabies in Shandong, China.

NDP Kinases Suppressed Bax-Dependent Apoptosis in Yeast System

  • K. C. Hwang;D. W. Ok;D. N. Kwon;H. K. Shin;Kim, J. H.
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.52-52
    • /
    • 2001
  • Many nucleoside diphosphate (NDP) kinases are ubiquitous enzymes responsible for the exchange of ${\gamma}$-phosphates between tri- and diphosphonucleosides. The catalytic Many nucleoside diphosphate (NDP) kinases are ubiquitous enzymes responsible for the exchange of ${\gamma}$-phosphates between tri- and diphosphonucleosides. The catalytic reaction follows a ping-pong mechanism in which the enzyme is transiently phosphorylated on a histidine residue conserved in all nucleoside diphosphate kinases. Beside their role in nucleotide synthesis, these enzymes present additional functions, possibly independent of catalysis, in processes such as differentiation, cell growth, tumor progression, metastasis and development. To clone murine nm23-M5, several expressed sequence tags (ESTs) of the GenBank data base, selected according to their homology to nm23-H5 cDNA, reconstituted a complete open reading frame (GenBank AF222750). To test whether murine NDPKs (1, 2, 3, 4, 5, and 6) can inhibit Bax-mediated toxicity in yeast, co-transformation was performed respectively. The yeast S.cerevisiae was transformed with a copy expression plasmid containing the histidine selection marker and expressing murine Bax under the control of a galactose-inducible promoter. Several clones were selected and found to be growth inhibited when Bax expression was induced with galactose. A representative clone was transformed again with a copy expression plasmid containing the tryptophane selection marker and expressing either murine Bcl-xL or NDPK under the control of a galactose-inducible promoter. Several subclones of the double-transformants were selected and characterized. The ability of Bcl-xL and NDPKs to suppress Bax-mediated toxicity was determined by growing yeast cells overnight in galactose media and spot-testing on galactose plates starting with an equal number of yeast cells as determined by taking the OD$_{600}$. Ten-fold serial dilutions were used in the spot-test. Plates were grown at 3$0^{\circ}C$ for 2-3 days. All murine NDPKs suppressed Bax dependent apoptosis. Futher study will be peformed whether Bax-toxicity inhibition was caused by NDP kinase activity or additional function.n.

  • PDF

A systematic exploration of ginsenoside Rg5 reveals anti-inflammatory functions in airway mucosa cells

  • Hyojin Heo;Yumin Kim;Byungsun Cha;Sofia Brito;Haneul Kim;Hyunjin Kim;Bassiratou M. Fatombi;So Young Jung;So Min Lee;Lei Lei;Sang Hun Lee;Geon-woo Park;Byeong-Mun Kwak;Bum-Ho Bin;Ji-Hwan Park;Mi-Gi Lee
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.97-105
    • /
    • 2023
  • Background: Hyperactivated airway mucosa cells overproduce mucin and cause severe breathing complications. Here, we aimed to identify the effects of saponins derived from Panax ginseng on inflammation and mucin overproduction. Methods: NCI-H292 cells were pre-incubated with 16 saponins derived from P. ginseng, and mucin overproduction was induced by treatment with phorbol 12-myristate 13-acetate (PMA). Mucin protein MUC5AC was quantified by enzyme-linked immunosorbent assay, and mRNA levels were analyzed using quantitative polymerase chain reaction (qPCR). Moreover, we performed a transcriptome analysis of PMA-treated NCI-H292 cells in the absence or presence of Rg5, and differential gene expression was confirmed using qPCR. Phosphorylation levels of signaling molecules, and the abundance of lipid droplets, were measured by western blotting, flow cytometry, and confocal microscopy. Results: Ginsenoside Rg5 effectively reduced MUC5AC secretion and decreased MUC5AC mRNA levels. A systematic functional network analysis revealed that Rg5 upregulated cholesterol and glycerolipid metabolism, resulting in the production of lipid droplets to clear reactive oxygen species (ROS), and modulated the mitogen-activated protein kinase and nuclear factor (NF)-kB signaling pathways to regulate inflammatory responses. Rg5 induced the accumulation of lipid droplets and decreased cellular ROS levels, and N-acetyl-ⳑ-cysteine, a ROS inhibitor, reduced MUC5AC secretion via Rg5. Furthermore, Rg5 hampered the phosphorylation of extracellular signal-regulated kinase and p38 proteins, affecting the NF-kB signaling pathway and pro-inflammatory responses. Conclusion: Rg5 alleviated inflammatory responses by reducing mucin secretion and promoting lipid droplet-mediated ROS clearance. Therefore, Rg5 may have potential as a therapeutic agent to alleviate respiratory disorders caused by hyperactivation of mucosa cells.

p66Shc in sheep preimplantation embryos: Expression and regulation of oxidative stress through the manganese superoxide dismutase-reactive oxygen species metabolic pathway

  • Tong Zhang;Jiaxin Zhang;Ruilan Li
    • Animal Bioscience
    • /
    • v.36 no.7
    • /
    • pp.1022-1033
    • /
    • 2023
  • Objective: p66Shc, a 66 kDa protein isoform encoded by the proto-oncogene SHC, is an essential intracellular redox homeostasis regulatory enzyme that is involved in the regulation of cellular oxidative stress, apoptosis induction and the occurrence of multiple age-related diseases. This study investigated the expression profile and functional characteristics of p66Shc during preimplantation embryo development in sheep. Methods: The expression pattern of p66Shc during preimplantation embryo development in sheep at the mRNA and protein levels were studied by quantitative real-time polymerase chain reaction (RT-qPCR) and immunofluorescence staining. The effect of p66Shc knockdown on the developmental potential were evaluated by cleavage rate, morula rate and blastocyst rate. The effect of p66Shc deficiency on reactive oxygen species (ROS) production, DNA oxidative damage and the expression of antioxidant enzymes (e.g., catalase and manganese superoxide dismutase [MnSOD]) were also investigated by immunofluorescence staining. Results: Our results showed that p66Shc mRNA and protein were expressed in all stages of sheep early embryos and that p66Shc mRNA was significantly downregulated in the 4-to 8-cell stage (p<0.05) and significantly upregulated in the morula and blastocyst stages after embryonic genome activation (EGA) (p<0.05). Immunofluorescence staining showed that the p66Shc protein was mainly located in the peripheral region of the blastomere cytoplasm at different stages of preimplantation embryonic development. Notably, serine (Ser36)-phosphorylated p66Shc localized only in the cytoplasm during the 2- to 8-cell stage prior to EGA, while phosphorylated (Ser36) p66Shc localized not only in the cytoplasm but also predominantly in the nucleus after EGA. RNAi-mediated silencing of p66Shc via microinjection of p66Shc siRNA into sheep zygotes resulted in significant decreases in p66Shc mRNA and protein levels (p<0.05). Knockdown of p66Shc resulted in significant declines in the levels of intracellular ROS (p<0.05) and the DNA damage marker 8-hydroxy2'-deoxyguanosine (p<0.05), markedly increased MnSOD levels (p<0.05) and resulted in a tendency to develop to the morula stage. Conclusion: These results indicate that p66Shc is involved in the metabolic regulation of ROS production and DNA oxidative damage during sheep early embryonic development.

Quercetin Attenuates the Production of Pro-Inflammatory Cytokines in H292 Human Lung Epithelial Cells Infected with Pseudomonas aeruginosa by Modulating ExoS Production

  • Hye In Ahn;Hyun-Jae Jang;Ok-Kyoung Kwon;Jung-Hee Kim;Jae-Hoon Oh;Seung-Ho Kim;Sei-Ryang Oh;Sang-Bae Han;Kyung-Seop Ahn;Ji-Won Park
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.430-440
    • /
    • 2023
  • The type three secretion system (T3SS) is a major virulence system of Pseudomonas aeruginosa (P. aeruginosa). The effector protein Exotoxin S (ExoS) produced by P. aeruginosa is secreted into the host cells via the T3SS. For the purpose of an experiment on inhibitors with regard to ExoS secretion, we developed a sandwich-type enzyme-linked immunosorbent assay (ELISA) system. Quercetin was selected because it has a prominent ExoS inhibition effect and also is known to have anti-inflammatory and antioxidant effects on mammalian cells. In this study, we investigated the effects of quercetin on the expression and secretion of ExoS using ELISA and Western blot analysis methods. The results showed that the secretion of ExoS was significantly decreased by 10 and 20 µM of quercetin. Also, popB, popD, pscF, and pcrV which are composed of the T3SS needle, are reduced by quercetin at the mRNA level. We also confirmed the inhibitory effect of quercetin on cytokines (IL-6, IL-1β, and IL-18) in P. aeruginosa-infected H292 cells by real-time polymerase chain reaction (PCR) and ELISA. Collectively, quercetin inhibits the secretion of ExoS by reducing both ExoS production and the expression of the needle protein of T3SS. Furthermore, these results suggest that quercetin has the potential to be used as an anti-toxic treatment for the inflammatory disease caused by P. aeruginosa infection.

The Quality Characteristics of Soy Cutlets Using Textured Soy Protein Treated with Different Enzymes (효소처리를 달리한 조직대두단백을 이용하여 제조한 콩까스의 품질특성)

  • Kim, Eun-Bi;Kim, Eun-Joo;Lee, Han-Na;Lee, Min-Kyoung;Oh, Jong-Shin;Kim, Sun-Ok;Lee, Sook-Young
    • Journal of the Korean Society of Food Culture
    • /
    • v.23 no.4
    • /
    • pp.507-513
    • /
    • 2008
  • The development of soy cutlets containing textured soy protein (TSP) as a meat analog was studied. In order to decrease the beany flavor and to increase the texture, TSP was treated with 0.3% Flavourzyme or 0.1% Protamex for 10 or 20 min, respectively. The degree of hydrolysis for TSP treated with Protamex was higher than that treated with Flavourzyme. Hydrolysis was observed to increase as the reaction time was increased for both Flavourzyme and Protamex. The water holding capacity of TSP treated with Protamex for 10 min was the highest, and that treated with Flavourzyme for 20 min was similar to that of Protamex treatment for 20 min. The oil binding capacity of TSP treated with Protamex for 20 min was the highest. The hardness of the soy cutlets using TSP treated with Flavourzyme for 10 min was higher than that treated for 20 min, while that of Protamex treated for 20 min was higher than that treated for 10 min. The cohesiveness of the soy cutlets using TSP treated with Flavourzyme or Protamex for 10 min was higher than those treated for 20 min. The chewiness of the soy cutlets treated with Flavourzyme for 10 min was higher than for those treated for 20 min, while those treated with Protamex for 20 min was higher than those treated for 10 min. The springiness of TSP treated with Flavourzyme for 20 min was higher than those treated for 10 min, and higher than those treated with Protamex for 10 or 20 min. For sensory evaluation, the beany flavor of the soy cutlets treated with Protamex for 20 min was the weakest. The flavor and chewiness of both a pork cutlet and a soy cutlet treated with Protamex for 20 min were the best. In the overall quality, soy cutlets treated with Protamex for 20 min was the most desirable. In conclusion, soy cutlets treated with 0.1% Protamex for 20 min could be a reasonable substitute of pork cutlets.

Amelioration of DSS-induced colitis in mice by TNF-α-stimulated mesenchymal stem cells derived from feline adipose tissue via COX-2/PGE2 activation

  • Kyeongbo Kim;Ju-Hyun An;Su-Min Park;GaHyun Lim;Kyung-Won Seo;Hwa-Young Youn
    • Journal of Veterinary Science
    • /
    • v.24 no.4
    • /
    • pp.52.1-52.13
    • /
    • 2023
  • Background: Mesenchymal stem cells (MSCs) have been investigated as therapeutic agents for inflammatory bowel disease (IBD). Stimulation of MSCs with pro-inflammatory cytokines is an approach to enhance their immunomodulatory effects. However, further investigation is required to support their application in immune-mediated disorders and companion animals. Objectives: This study aimed to assess the therapeutic effect of tumor necrosis factor (TNF)-α-stimulated feline adipose tissue-derived MSCs (fAT-MSCs) in a dextran sulfate sodium (DSS)-induced colitis mouse model. Methods: Colitis mice was made by drinking water with 3% DSS and fAT-MSCs were injected intraperitoneally. Colons were collected on day 10. The severity of the disease was evaluated and compared. Raw 264.7 cells were cultured with the conditioned medium to determine the mechanism, using quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Results: TNF-α-stimulated fAT-MSCs more improved severity of DSS-induced colitis in disease activity, colon length, histologic score, and inflammatory cytokine. In sectionized colon tissues, the group comprising TNF-α-stimulated fAT-MSCs had higher proportion of CD11b+CD206+ macrophages than in the other groups. In vitro, TNF-α-stimulation increased cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) secretion from fAT-MSCs. The conditioned medium from TNF-α-stimulated fAT-MSCs enhanced the expression of interleukin-10 and arginase-1 in LPS-activated Raw 264.7 cells. Conclusions: These results represent that TNF-α-stimulated fat-mscs ameliorate the inflamed colon more effectively. Furthermore, we demonstrated that the effectiveness was interlinked with the COX-2/PGE2 pathway.