• Title/Summary/Keyword: Enzyme Conversion

Search Result 448, Processing Time 0.032 seconds

Degradation of Crystalline Cellulose by the Brown-rot Basidiomycete Fomitopsis palustris

  • Yoon Jeong-Jun;Kim Young-Kyoon
    • Journal of Microbiology
    • /
    • v.43 no.6
    • /
    • pp.487-492
    • /
    • 2005
  • This study demonstrated that the brown rot basidiomycete Fomitopsis palustris was able to degrade crystalline cellulose (Avicel). This fungus could also produce the three major cellulases (exoglucanases, endoglucanases, and $\beta-glucosidase$) when the cells were grown on $2.0\%$ Avicel. Avicel degraded by F. palustris showed a decrease in relative crystallinity from $83\%\;to\;78.5\%$ after 14 days of incubation. The characterization study indicated that optimum pH was 4.5 and optimum temperature was $70^{\circ}C$ for exoglucanase (cellobiohydrolase) activity. Hydrolysis of Avicel by the crude enzyme from F. palustris yielded 1.6 mg/ml of glucose after 43 h, which corresponded to a cellulose conversion degree of $3.2\%$. Therefore, this study revealed for the first time that the brown rot basidiomycete F. palustris produces cellulases capable of yielding soluble sugars from crystalline cellulose.

Production of Acetic Acid from Cellulosic Biomass (섬유성 바이오매스를 이용한 Acetic Acid 생산)

  • 우창호;박준호;윤현희
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.458-463
    • /
    • 2000
  • Production of acetic acid from cellulosic biomass by Simultaneous Saccharification and Extractive Fermentation (SSEF) was investigated. The homoacetate organism used in this study was a strain of Clostridium thermoaceticum, ATCC # 49707. A batch operation of Simultaneous Saccharification and Fermentation(SSF) using ${\alpha}$-cellulose at pH 5.5 and 55$^{\circ}C$ yielded 40% conversion of cellulose to acetic acid, while a fed-batch SSF operation produced a maximum acetic acid concentration of 25 g/L, with 50% overall yield. In-situ extractive fermentation to reduce the end-product inhibition on both bacteria and enzyme was carried out. in a batch SSEF using 200 g/L IRA-400 resin, acetic acid concentration reached to 23.9 g/L and acetic acid yield and productivity were observed to be 48% and 0.20 g/L-hr, respectively.

  • PDF

Enzymatic Production of 15-Hydroxyeicosatetraenoic Acid from Arachidonic Acid by Using Soybean Lipoxygenase

  • Kim, Baek-Joong;Shin, Kyung-Chul;Oh, Deok-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.3
    • /
    • pp.359-362
    • /
    • 2014
  • 15-Hydroxyeicosatetraenoic acid (HETE), as a mammalian biologically active metabolite, has anticarcinogenic effect. The conditions of producing 15-HETE from arachidonic acid by using soybean lipoxygenase were optimal at pH 8.5 and $20^{\circ}C$ with 9 g/l arachidonic acid, 54.4 U/ml soybean lipoxygenase, and 4% methanol. Under these optimized conditions, the enzyme produced 9.5 g/l 15-HETE after 25 min, with a molar conversion yield of 99% and a productivity of $22.8gl^{-1}h^{-1}$. To the best of our knowledge, this is the first biotechnological production of 15-HETE.

Effect of Lead Ion on The Hepatic Xanthine Oxidase Activity in Vitro (납이온이 잔틴 옥시다제 활성에 미치는 영향)

  • Huh, Keun;Shin, Uk-Seob;Lee, Sang-Hoon;Ann, Won-Hyo
    • YAKHAK HOEJI
    • /
    • v.39 no.5
    • /
    • pp.521-527
    • /
    • 1995
  • This study was done to determine the effect of lead acetate on the activities of the hepatic cytosofic xanthine oxidase and aldehyde oxidase which were well known as oxygen free radical generating enzyme in vitro. Lead ion accelerated the formation of lipid peroxide and the increment of xanthine oxidase(type O) activity and the type conversion ratio from xanthine dehydrogenase to xanthine oxidase dose-dependently. But xanthine dehydrogenase(type D) activity was decreased. Aldehyde oxidase activity was not changed by lead ion. These data suggested that lead-induced cellular to)dcity may be concerned partially with xanthine oxidase mediated lipid peroxidation.

  • PDF

Structure Based Protein Engineering of Aldehyde Dehydrogenase from Azospirillum brasilense to Enhance Enzyme Activity against Unnatural 3-Hydroxypropionaldehyde

  • Son, Hyeoncheol Francis;Kim, Kyung-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.170-175
    • /
    • 2022
  • 3-Hydroxypropionic acid (3HP) is a platform chemical and can be converted into other valuable C3-based chemicals. Because a large amount of glycerol is produced as a by-product in the biodiesel industry, glycerol is an attractive carbon source in the biological production of 3HP. Although eight 3HP-producing aldehyde dehydrogenases (ALDHs) have been reported so far, the low conversion rate from 3-hydroxypropionaldehyde (3HPA) to 3HP using these enzymes is still a bottleneck for the production of 3HP. In this study, we elucidated the substrate binding modes of the eight 3HP-producing ALDHs through bioinformatic and structural analysis of these enzymes and selected protein engineering targets for developing enzymes with enhanced enzymatic activity against 3HPA. Among ten AbKGSADH variants we tested, three variants with replacement at the Arg281 site of AbKGSADH showed enhanced enzymatic activities. In particular, the AbKGSADHR281Y variant exhibited improved catalytic efficiency by 2.5-fold compared with the wild type.

Structural Insights and Mechanistic Understanding of Iron-Molybdenum Cofactor Biosynthesis by NifB in Nitrogenase Assembly Process

  • Wonchull Kang
    • Molecules and Cells
    • /
    • v.46 no.12
    • /
    • pp.736-742
    • /
    • 2023
  • NifB, a radical S-adenosylmethionine (SAM) enzyme, is pivotal in the biosynthesis of the iron-molybdenum cofactor (FeMo-co), commonly referred to as the M-cluster. This cofactor, located within the active site of nitrogenase, is essential for the conversion of dinitrogen (N2) to NH3. Recognized as the most intricate metallocluster in nature, FeMo-co biosynthesis involves multiple proteins and a sequence of steps. Of particular significance, NifB directs the fusion of two [Fe4S4] clusters to assemble the 8Fe core, while also incorporating an interstitial carbide. Although NifB has been extensively studied, its molecular mechanisms remain elusive. In this review, we explore recent structural analyses of NifB and provide a comprehensive overview of the established catalytic mechanisms. We propose prospective directions for future research, emphasizing the relevance to biochemistry, agriculture, and environmental science. The goal of this review is to lay a solid foundation for future endeavors aimed at elucidating the atomic details of FeMo-co biosynthesis.

Endogenous Phenoloxidase Purified from an Earthworm, Lumbricus rubellus (붉은 지렁이(Lumbricus rubellus) 체내로부터 정제한 Phenoloxidase)

  • 백승렬;조은정;유경희;김유삼;서정진;장정순
    • The Korean Journal of Zoology
    • /
    • v.39 no.1
    • /
    • pp.36-46
    • /
    • 1996
  • An endogenous phenoloxidase (EPO) from earthworm, Lumbricus rubellus, has been purified and characterized. The purified EPO using ammonium sulfate fractionation, Blue-2, Phenyl-, and Q-sepharose chromatography steps was revealed in SDS-PAGE as a single protein banri with Mr. of 59 kl)a. A native strudure of the enzyme was examined with an in situ staining of a nondenatudng-PAGE using DL-dopa as a substrate. The result showed that a single band due to the EPO activity was located siighdy above a standard polypeptide with Mr. of 210 kl)a. These fads indicate that the EPO is an oligomeric enzyme. The presence of a monophenolase activity of the purified EPO, which hydroxylates tyrosine to dopa, was confirmed by observing dopachrome accumulation at 475 nm at PH 8.0 with a typical lag phase during 60 mm. of meausrement. A series of inhibition study has been performed for the enzyme with several divalent cation chelators such as phenyithiourea (Flu), 1, lO-phenanthroline, EDTA, and EGTA. Among them, only V'flj inhibited the enzyme with 1C0.5 of 65 MM, which indicated that copper was critical for the catalysis of EPO. The enzyme was maximally active at 35'C and pH 8.0 when L-dopa to dopachrome conversion was spectrophotometricaily monitored at 475 nm. The apparent Km values of P0 for L-opa were obtained as 1.86 mM and 13.8 mM at pH 6.5 and 8.0, respectively. The catalytic efficiencies at both pH were almost identical [(kat/Km)pH8.0/(kcat/Km)pH6.5 = O.92] while the Vmax at p11 8.0 was 6.6-fold higher than that at pH 6.5. This fact may indicate that pH affeds the catalysis at substrate and/or enzyme-substrate complex level rather than the enzyme itself. Taken together, the EPO was an oligomeric enzyme which did not require proteolysis for its activation. These results also indicated that the enzyme can exist, at least, in part as a latent form In vivo, which might be distinct from the prophenoloxidase activating system. Therefore, it is pertinent to consider that there must be certain regulatory molecules or phenomena in L. rubellus which make the 1,0 in a latent form in vivo before the foreign invasions.

  • PDF

Electrostatic Immobilization of D-Xylose Isomerase to a Cation Exchanger for the Conversion of D-Xylose to D-Xylulose (D-xylose에서 D-xylulose로의 전환을 위한 D-xylose Isomerase의 정전기적 고정화)

  • Hang, Nguyen Thi;Kim, Sung-Gun;Kweon, Dae-Hyuk
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.2
    • /
    • pp.163-167
    • /
    • 2012
  • Since D-xylose is not fermentable in Saccharomyces cerevisiae, its conversion to D-xylulose is required for its application in biotechnological industries using S. cerevisiae. In order to convert D-xylose to D-xylulose by way of an enzyme immobilized system, D-xylose isomerase (XI) of Escherichia coli was fused with 10-arginine tag (R10) at its C-terminus for the simple purification and immobilization process using a cation exchanger. The fusion protein XIR10 was overexpressed in recombinant E. coli and purified to a high purity by a single step of cation exchange chromatography. The purified XIR10 was immobilized to a cation exchanger via the electrostatic interaction with the C-terminal 10-arginine tag. Both the free and immobilized XIR10 exhibited similar XI activities at various pH values and temperatures, indicating that the immobilization to the cation exchanger has a small effect on the enzymatic function of XIR10. Under optimized conditions for the immobilized XIR10, D-xylose was isomerized to D-xylulose with a conversion yield of 25%. Therefore, the results of this study clearly demonstrate that the electrostatic immobilization of XIR10 via the interaction between the 10-arginine tag and a cation exchanger is an applicable form of the conversion of D-xylose to D-xylulose.

Influence of dietary supplementation of autolyzed whole yeast and yeast cell wall products on broiler chickens

  • Ahiwe, Emmanuel Uchenna;Abdallh, Medani Eldow;Chang'a, Edwin Peter;Omede, Apeh Akwu;Al-Qahtani, Mohammed;Gausi, Harriet;Graham, Hadden;Iji, Paul Ade
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.4
    • /
    • pp.579-587
    • /
    • 2020
  • Objective: This study evaluated the effect of yeast products on growth performance, visceral organ weights, endogenous enzyme activities, ileal nutrient digestibility and meat yield of broiler chickens fed diets containing autolyzed whole yeast (WY) and yeast cell walls (YCW) at varying levels of inclusion. Methods: Nine dietary treatments consisting of WY or YCW included at 0.5, 1.0, 1.5, or 2.0 g/kg diet and a control diet without yeast supplementation was used in the experiment. Each of the nine treatments was replicated six times with nine birds per replicate. Birds were housed in cages, in climate-controlled rooms and fed starter, grower and finisher diets. Results: There was an improvement (p<0.05) in body weight gain and feed conversion ratio on d 10, 24, and 35 for birds fed 1.0 to 2.0 g/kg WY or YCW diet. Small intestine weight was heavier on d 10 and 24 for birds on higher levels of WY and YCW compared to the control group. On d 10 and 24, there was a significant increase (p<0.05) in tissue protein content and pancreatic enzyme activities (trypsin and chymotrypsin) of birds on 1.5 to 2.0 g/kg WY and YCW diets compared to the control group. Compared to the control group, birds on WY (2.0 g/kg diet) and YCW (at 1.5 and 2.0 g/kg diet) had better (p<0.05) protein digestibility on d 24. On d 35, there was significant improvement (p<0.05) in percentage of carcass, absolute and relative breast weight for broiler chickens fed WY and YCW mostly at 2 g/kg diet compared to birds on the control diet. Conclusion: Supplementation of diets with autolyzed WY and YCW products especially at 1.5 to 2.0 g/kg diet improved broiler chicken performance and meat yield through their positive effects on ileal protein digestibility and pancreatic enzyme activities.

Study of Measles, Mumps and Rubella Antibodies by Enzyme Immunoassay in Infants and Children in Korea (효소 면역측정법에 의한 한국 영아 소아의 홍역 볼거리 및 풍진 항체에 관한 연구)

  • Park, Hae-Kyung;Kee, Bock-Keun
    • The Journal of the Korean Society for Microbiology
    • /
    • v.22 no.4
    • /
    • pp.473-483
    • /
    • 1987
  • Present study was undertaken to find when is right time for vaccination against Measles, Mumps and Rubella and what is the seropositive conversion rate after those vacinations. For this purpose, sera from 106 infants and children adimitted in Prediatric Department of Won Kwang University Hospital, Iri, Chonbuk, Korea were divided into 3 groups, such as (1) Vaccination group with definite information when it was given, (2) Unknown group whether vaccination was given or not, (3) Not vaccinated group. They were tested of IgG and IgM antibodies against Measles, Mumps and Rubella using Enzyme Immunoassay method and the following results were obtained. 1. Infants below 6 month of age showed to have IgG antibodies which seemed to have been transferred from mother in 87.8%(29/33) for Measles, 78.8%(26/33) for Mumps and 39.4%(13/13) for Rubella. And they showed IgM antibodies which are thought to have been produced by recent infection in 24.2%(8/33) for Measles, 48.5%(16/33) for Mumps and 9.1%(3/33) for Rubella. 2. Positivity of antibody IgG against Rubella was observed remarkably lower than it is against Measles and Mumps being only 39.4%(13/33) in $0{\sim}5$ month, 30.8%(8/26) in $6{\sim}11$ months, 30%(3/10) in $12{\sim}14$ months and 62.9%(22/35) in $18{\sim}36$ months of age. 3. ${\Delta}OD's$ of IgG and IgM antibodies against Measles were observed increasing with age being 0.444, 0.220 in $0{\sim}5$ months, 0.326, 0.134 in $6{\sim}11$ months, 0.581, 0.140 in $12{\sim}14$ months, 0.512, 0.000 in $15{\sim}17$ months and 0.887, 0.278 in $18{\sim}36$ months of age, respectively. 4. ${\Delta}OD's$ of IgG and IgM antibodies against Mumps were observed increasing with age being 0.427, 0.340 in $0{\sim}5$ months, 0.400, 0.249 in $6{\sim}11$ months, 0.694, 0.314 in $12{\sim}14$ months, 0.539, 0.165 in $15{\sim}17$ months and 0.854, 0.350 in $18{\sim}36$ months of age, respectively. 5. Vaccination for Measles, Mumps and Rubella is generally to start at 15 months of age in Korea, by which age their antibodies are found to exsist in more than 80% of tested samples. So, it seems to be very reasonable to start the vaccination schedule at earlier age than it does currently. 6. From the present study, it seems to have been clearly confirmed that Enzyme Immunoassay method is a reliable method with good reproducibility for mass survey of IgG and IgM antibodies against Measles, Mumps and Rubella in infants and children.

  • PDF