Browse > Article
http://dx.doi.org/10.4014/jmb.2110.10038

Structure Based Protein Engineering of Aldehyde Dehydrogenase from Azospirillum brasilense to Enhance Enzyme Activity against Unnatural 3-Hydroxypropionaldehyde  

Son, Hyeoncheol Francis (KNU Institute for Microorganisms, Kyungpook National University)
Kim, Kyung-Jin (KNU Institute for Microorganisms, Kyungpook National University)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.2, 2022 , pp. 170-175 More about this Journal
Abstract
3-Hydroxypropionic acid (3HP) is a platform chemical and can be converted into other valuable C3-based chemicals. Because a large amount of glycerol is produced as a by-product in the biodiesel industry, glycerol is an attractive carbon source in the biological production of 3HP. Although eight 3HP-producing aldehyde dehydrogenases (ALDHs) have been reported so far, the low conversion rate from 3-hydroxypropionaldehyde (3HPA) to 3HP using these enzymes is still a bottleneck for the production of 3HP. In this study, we elucidated the substrate binding modes of the eight 3HP-producing ALDHs through bioinformatic and structural analysis of these enzymes and selected protein engineering targets for developing enzymes with enhanced enzymatic activity against 3HPA. Among ten AbKGSADH variants we tested, three variants with replacement at the Arg281 site of AbKGSADH showed enhanced enzymatic activities. In particular, the AbKGSADHR281Y variant exhibited improved catalytic efficiency by 2.5-fold compared with the wild type.
Keywords
3-Hydroxypropionate; aldehyde dehydrogenase; Azospirillum brasilense;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Son HF, Park S, Yoo TH, Jung GY, Kim KJ. 2017. Structural insights into the production of 3-hydroxypropionic acid by aldehyde dehydrogenase from Azospirillum brasilense. Sci. Rep. Uk 7: 46005.   DOI
2 Suyama A, Higuchi Y, Urushihara M, Maeda Y, Takegawa K. 2017. Production of 3-hydroxypropionic acid via the malonyl-CoA pathway using recombinant fission yeast strains. J. Biosci. Bioeng. 124: 392-399.   DOI
3 Hugler M, Huber H, Stetter KO, Fuchs G. 2003. Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Arch Microbiol. 179: 160-173.   DOI
4 Ashok S, Raj SM, Rathnasingh C, Park S. 2011. Development of recombinant Klebsiella pneumoniae Delta dhaT strain for the coproduction of 3-hydroxypropionic acid and 1,3-propanediol from glycerol. Appl. Microbiol. Biotechnol. 90: 1253-1265.   DOI
5 Forage RG, Foster MA. 1982. Glycerol fermentation in Klebsiella pneumoniae: functions of the coenzyme B12-dependent glycerol and diol dehydratases. J. Bacteriol. 149: 413-419.   DOI
6 Jo JE, Raj SM, Rathnasingh C, Selvakumar E, Jung WC, Park S. 2008. Cloning, expression, and characterization of an aldehyde dehydrogenase from Escherichia coli K-12 that utilizes 3-Hydroxypropionaldehyde as a substrate. Appl. Microbiol. Biotechnol. 81: 51-60.   DOI
7 Trott O, Olson AJ. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31: 455-461.   DOI
8 da Silva GP, Mack M, Contiero J. 2009. Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 27: 30-39.   DOI
9 Su M, Li Y, Ge X, Tian P. 2015. 3-Hydroxypropionaldehyde-specific aldehyde dehydrogenase from Bacillus subtilis catalyzes 3-hydroxypropionic acid production in Klebsiella pneumoniae. Biotechnol. Lett. 37: 717-724.   DOI
10 Borodina I, Kildegaard KR, Jensen NB, Blicher TH, Maury J, Sherstyk S, et al. 2015. Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via beta-alanine. Metab. Eng. 27: 57-64.   DOI
11 Karp EM, Eaton TR, Nogue VSI, Vorotnikov V, Biddy MJ, Tan ECD, et al. 2017. Renewable acrylonitrile production. Science 358: 1307-1310.   DOI
12 Hugler M, Menendez C, Schagger H, Fuchs G. 2002. Malonyl-coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J. Bacteriol. 184: 2404-2410.   DOI
13 Park YS, Choi UJ, Nam NH, Choi SJ, Nasir A, Lee SG, et al. 2017. Engineering an aldehyde dehydrogenase toward its substrates, 3-hydroxypropanal and NAD+, for enhancing the production of 3-hydroxypropionic acid. Sci. Rep. 7: 17155.   DOI
14 Chu HS, Kim YS, Lee CM, Lee JH, Jung WS, Ahn JH, et al. 2015. Metabolic engineering of 3-hydroxypropionic acid biosynthesis in Escherichia coli. Biotechnol. Bioeng. 112: 356-364.   DOI
15 Raj SM, Rathnasingh C, Jung WC, Selvakumar E, Park S. 2010. A Novel NAD+-dependent aldehyde dehydrogenase encoded by the puuC gene of Klebsiella pneumoniae DSM 2026 that utilizes 3-hydroxypropionaldehyde as a substrate. Biotechnol. Bioproc. E. 15: 131-138.   DOI
16 Li Y, Su M, Ge X, Tian P. 2013. Enhanced aldehyde dehydrogenase activity by regenerating NAD+ in Klebsiella pneumoniae and implications for the glycerol dissimilation pathways. Biotechnol. Lett. 35: 1609-1615.   DOI
17 Ko Y, Ashok S, Zhou S, Kumar V, Park S. 2012. Aldehyde dehydrogenase activity is important to the production of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae. Process Biochem. 47: 1135-1143.   DOI
18 Kumar V, Ashok S, Park S. 2013. Recent advances in biological production of 3-hydroxypropionic acid. Biotechnol. Adv. 31: 945-961.   DOI
19 Jiang X, Meng X, Xian M. 2009. Biosynthetic pathways for 3-hydroxypropionic acid production. Appl. Microbiol. Biotechnol. 82: 995-1003.   DOI
20 Rathnasingh C, Raj SM, Lee Y, Catherine C, Ashoka S, Park S. 2012. Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains. J. Biotechnol. 157: 633-640.   DOI
21 Nitayavardhana S, Khanal SK. 2011. Biodiesel-derived crude glycerol bioconversion to animal feed: a sustainable option for a biodiesel refinery. Bioresour. Technol. 102: 5808-5814.   DOI
22 Lebedev AA, Young P, Isupov MN, Moroz OV, Vagin AA, Murshudov GN. 2012. JLigand: a graphical tool for the CCP4 template-restraint library. Acta Crystallogr. D, Biol. Crystallogr. 68: 431-440.   DOI
23 Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46: W296-W303.   DOI
24 Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. 2009. AutoDock4 and autodockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30: 2785-2791.   DOI
25 Moss GP. Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB), IUBMB, Accessed 17 Aug. 2021, .
26 Luo LH, Seo JW, Heo SY, Oh BR, Kim DH, Kim CH. 2013. Identification and characterization of Klebsiella pneumoniae aldehyde dehydrogenases increasing production of 3-hydroxypropionic acid from glycerol. Bioprocess Biosyst. Eng. 36: 1319-1326.   DOI
27 Studer G, Rempfer C, Waterhouse AM, Gumienny R, Haas J, Schwede T. 2020. QMEAND is Co-distance constraints applied on model quality estimation. Bioinformatics 36: 2647.   DOI
28 Haas T, Brossmer C, Meier M, Arntz D, Freund A. 2000. Process for preparing 3-hydroxypropionic acid or its salt. Patent Application No. EP0819670.
29 Kumar V, Ashok S, Park S. 2013. Recent advances in biological production of 3-hydroxypropionic acid. Biotechnol. Adv. 31: 945-961.   DOI
30 Valdehuesa KNG, Liu HW, Nisola GM, Chung WJ, Lee SH, Park SJ. 2013. Recent advances in the metabolic engineering of microorganisms for the production of 3-hydroxypropionic acid as C3 platform chemical. Appl. Microbiol. Biotechnol. 97: 3309-3321.   DOI
31 Behr A, Botulinski A, Carduck Fj SM. 1996. process for preparing 3-hydroxypropionic acid. Patent Application No. EP0579617.