• Title/Summary/Keyword: Enzymatic activity

Search Result 1,470, Processing Time 0.039 seconds

Preparation of $Gal^3Man_4(6^3-mono-{\alpha}-D-galacto-pyranosyl-{\beta}-mannotetraose)$ by Bacillus sp. ${\beta}-mannanase$ and Growth Activity to Intestinal Bacteria (Bacillus sp.유래 ${\beta}-mannanase$에 의한 $Gal^3Man_4(6^3-mono-{\alpha}-D-galacto-pyranosyl-{\beta}-mannotetraose)$ 조제 및 장내세균에 대한 생육활성)

  • Kim, Sang-Woo;Park, Gwi-Gun
    • Applied Biological Chemistry
    • /
    • v.47 no.4
    • /
    • pp.379-383
    • /
    • 2004
  • For the elucidation of substrate specificity to the brown copra meal by Bacillus sp. ${\beta}-mannanase.$, the enzymatic hydrolysate after 24 hr of reaction was heated in a boiling water bath for 10 min, and then centrifuged to remove the insoluble materials from hydrolysates. The major hydrolysates composed of D.P 5 and 7 galactosyl mannooligosaccharides. For the separate of galactosyl mannooligosaccharides, the supernatant solution of 150 ml was put on a first activated carbon column. The column was then washed with 5 l of water to remove mannose and salts. The oligosaccharides in the column were eluted by a liner gradient of $0{\sim}30%$ ethanol, at the flow rate of 250 ml per hour. The sugar composition in each fraction tubes was examined by TLC and FACE analysis. The combined fraction from F3 was concentrated to 30 ml by vacuum evaporator. Then put on a second activated carbon column. The oligosaccharides in the column were eluted by a liner gradient of $0{\sim}30%$ ethanol (total volume: 5 l), at the flow rate of 250 ml per hour. The eluent was collected in 8 ml fraction tubes, and the total sugar concentration was measured by method of phenol-sulfuric acid. The major component of F2 separated by 2nd activated carbon column chromatography were identified $Gal^3Man_4(6^3-mono-{\alpha}-D-galactopyranosyl-{\beta}-mannotetraose)$. To investigate the effects of brown copra meal galactomannooligosaccharides on growth of Bifidobacterium longum, B. bifidum were cultivated individually on the modified-MRS medium containing carbon source such as $Gal^3Man_4$, compared to those of standard MRS medium.

Expression of Paenibacillus macerans Cycloinulooligosaccharide Fructanotransferase in Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 Paenibacilius macerans 유래 cycloinulooligosaccha-ride fructanotransferase의 발현)

  • Kim Hyun-Chul;Kim Jeong-Hyun;Jeon Sung-Jong;Choi Woo-Bong;Nam Soo-Wan
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.317-322
    • /
    • 2005
  • The cycloinulooligosaccharide fructanotransferase (CFTase) gene (cft) from Paenibacillus macerans was subcloned into an E. coli-yeast shuttle vector, pYES2.0, resulting in pYGECFTN. The plasmid pYGECFTN (8.6 kb) was introduced into Saccharomyces cerevisiae SEY2102 cells and then the transformants were selected on the synthetic defined media lacking uracil. The cft gene expression in yeast transformant was demonstrated by the analyses cyclofructan (CF) spots on thin-layer chromatogram. The recombinant CFTase was not secreted into the medium and localized in the periplasmic space. The production of CF was observed after 5 min of the enzymatic reaction with inulin. The optimun pH and temperature for CF production were found to be at pH 8.0 and $45^{\circ}C$, respectively. Enzyme activity was stably maintained up to $55^{\circ}C$. The CF was produced from all inulin sources and was most efficiently produced from dahlia tubers and Jerusalem artichokes.

Lowering the Bitterness of Enzymatic Hydrolysate Using Aminopeptidase-active Fractions from the Common Squid (Todarodes pacificus) Hepatopancreas (살 오징어(Todarodes pacificus) 간췌장으로부터 aminopeptidase 활성 획분의 쓴맛 개선 효과)

  • Kim, Jin-Soo;Kim, Hye-Suk;Lee, Hyun Ji;Park, Sung Hwan;Kim, Ki Hyun;Kang, Sang In;Heu, Min Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.716-722
    • /
    • 2014
  • Aminopeptidase-active fractions from crude extract of the hepatopancreas of a common squid (Todarodes pacificus) were obtained using acetone (AC; 30-40%) and ammonium sulfate precipitation (AS; 60-70% saturation), anion exchange (AE-II; 0.2 M NaCl) and gel filtration chromatography (GF-I; 30-50 kDa), respectively. The debittering capacity of GF-I fraction based on the aminopeptidase activity (89.2 U/mg), recovery (56.6%) and sensory evaluation (1.0) was better than that of other fractions. Release of amino acids increased as incubation time was increased, and the bitterness of the enzyme reaction mixtures decreased. Incubation with the GF-I fraction for 24 h resulted in the hydrolysis of several peptides, as revealed by reverse-phase HPLC profiles. Peaks 3, 5 and 6 showed the decreased area (%), whereas peaks 1, 2 and 4 showed the increased area. The GF-I fractions were found to be suitable for reducing bitterness in protein hydrolysates by catalyzing the hydrolysis of bitter peptides.

Preparation of High Purity Galacto-Oligosaccharide and Its Prebiotic Activity In Vitro Evaluation (고순도 Galactooligosaccharide 제조 및 유산균 증식 활성)

  • Hong, Ki Bae;Suh, Hyung Joo;Kim, Jae Hwan;Kwon, Hyuk Kon;Park, Chung;Han, Sung Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.6
    • /
    • pp.1026-1032
    • /
    • 2015
  • This study attempted to find an efficient method for the preparation of high-purity galactooligosaccharides (HP-GOS) using ${\beta}$-galactosidase and yeast fermentation. GOS prepared using Lactozym 3000L showed the greatest enhancement in total GOS of the six ${\beta}$-galatosidases tested. GOS alone achieved 51% conversion of initial lactose. GOS production was enhanced by fermentation with commercial yeast (Saccharomyces cerevisiae); its concentration reached 71% after 36h fermentation with 8% yeast. Component sugar analysis with HPLC indicated that HP-GOS fermented with S. cerevisiae showed significantly increased levels of 4'/6'-galactosyllactose and total GOS as well as a significantly decreased glucose level. HP-GOS facilitated the growth of Lactobacillus sp. (L. acidophilus and L. casei) and Bifidobacterium sp. (B. longum and B. bifidum). In sum, high-purity GOS has been successfully produced through both an enzymatic process and yeast fermentation. GOS encourages the growth of bacteria such as Lactobacillus and Bifidobacterium that may be beneficial to human gastrointestinal health.

Cell Surface Display of Cycloinulooligosaccharide Fructanotransferase Gene in Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 Cycloinulooligosaccharide Fructanotransferase 유전자의 표층 발현)

  • Kim, Hyun-Jin;Lee, Jae-Hyung;Kim, Hyun-Chul;Kim, Yeon-Hee;Kwon, Hyun-Ju;Nam, Soo-Wan
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.241-247
    • /
    • 2007
  • The cycloinulooligosaccharide fructanotransferase (CFTase) gene (cft) from Paenibacillus macerans was subcloned into the surface display vector, pCTcon (GAL1 promoter). The constructed plasmid, pCTECFTN (9.0 kb) was introduced to S. cerevisiae EBY100 cell and then east transformants were selected on the synthetic defined medium lacking uracil and on the inulin containing medium. The surface display of CFTase was confirmed by immunofluorescence microscopy and its enzymatic ability to form cycloinulooligosaccharides(cyclofructans, CFs) from inulin. The total activity of the CFTase was reached about 5.52 unit/1 by cultivation of yeast transformant on YPDG medium. The optimized conditions determined were as follows; pH, 8.0; temperature, $50^{\circ}C$ ; substrate concentration, 5%; inulin source, Jerusalem artichoke. By the reaction with inulin, CFs consisting of cycloinulohexaose (CF6), cycloinuloheptaose (CF7), and cycloinulooctaose (CF8) were produced and CF6 was the major product.

Purification and Characterization of Eye-Specific Lactate Dehydrogenase C4 Isozyme in Greenling (Hexagrammos otakii) (쥐노래미 eye-specific LDH C4 동위효소의 정제 및 특성)

  • Cho, Sung-Kyu;Yum, Jung-Joo
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1565-1572
    • /
    • 2011
  • Eye-specific lactate dehydrogenase (EC 1.1.1.27, LDH) $C_4$ isozyme in the eyes of greenlings (Hexagrammos otakii) was successfully purified by affinity chromatography and continuous-elution electrophoresis. The molecular weight of the purified eye-specific LDH $C_4$ isozyme was 154.8 kDa, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Optimal pH for enzymatic reaction of the eye-specific LDH $C_4$ isozyme was pH 8.5. $K^{PYR}_m$ value of the purified eye-specific LDH $C_4$ isozyme was $1.88{\times}10^{-5}$ M using pyruvate as a substrate. These results indicate that we must consider pH when measuring eye-specific LDH $C_4$ isozyme activity. The eye-specific LDH $C_4$ isozyme had a higher binding affinity for the substrate as a pyruvate than LDH A4 isozyme. Antibodies produced against the purified eye-specific LDH $C_4$ isozyme may be used in the diagnosis of several human diseases and in comparative physiological studies of fishes.

Cloning and protein expression of Aggregatibacter actinomycetemcomitans cytolethal distending toxin C

  • Lee, Eun-Sun;Park, So-Young;Lee, Eun-Suk;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.sup2
    • /
    • pp.317-324
    • /
    • 2008
  • Purpose: Aggregatibacter actinomycetemcomitans was associated with localized aggressive periodontitis, endocarditis, meningitis, and osteomyelitis. The cytolethal distending toxin (CDT) of A. actinomycetemcomitans was considered as a key factor of these diseases is composed of five open reading frames (ORFs). Among of them, An enzymatic subunit of the CDT, CdtB has been known to be internalized into the host cell in order to induce its genotoxic effect. However, CdtB can not be localized in host cytoplasm without the help of a heterodimeric complex consisting of CdtA and CdtC. So, some studies suggested that CdtC functions as a ligand to interact with GM3 ganglioside of host cell surface. The precise role of the CdtC protein in the mechanism of action of the holotoxin is unknown at the present time. The aim of this study was to generate recombinant CdtC proteins expression from A. actinomycetemcomitans, through gene cloning and protein used to investigate the function of Cdt C protein in the bacterial pathogenesis. Materials and Methods: The genomic DNA of A. actinomycetemcomitans Y4 (ATCC29522) was isolated using the genomic DNA extraction kit and used as template to yield cdtC genes by PCR. The amplifed cdtC genes were cloned into T-vector and cloned cdt C gene was then subcloned to pET28a expression vector. The pET28a-cdtC plasmid expressed in BL21 (DE3) Escherichia coli system. Diverse conditons were tested to opitimize the expression and purification of functional CdtC protein in E. coli. Results: In this study we reconstructed CdtC subunit of A. actinomycetemcomitans Y4 and comfirmed the recombinant CdtC expression by SDS-PAGE and Western Blotting. The expression level of the recombinant CdtC was about 2% of total bacterial proteins. Conclusion: The lab condition of procedure for the purification of functionally active recombinant CdtC protein is established. The active recombinant CdtC protein will serve to examine the role of CdtC proteins in the host recognition and enzyme activity of CDT and investigate the pathological process of A. actinomycetemcomitans in periodontal disease.

Radical Scavenging Activities of Phellinus pini (상황버섯(Phellinus pini)의 라디칼 소거작용)

  • Nam, Byung-Hyouk;Jo, Wol-Soon;Cui, Yong;Choi, Yoo-Jin;Lee, Jae-Dong;Jeong, Min-Ho
    • Journal of Life Science
    • /
    • v.20 no.3
    • /
    • pp.326-335
    • /
    • 2010
  • The concentration of phenolics in Phellinus pini (CY001) extracts, expressed as mg of GAEs per g of P. pini fractions, and the EtOAc fraction (436.5 mg GAEs/g) of P. pini had a higher phenolic content than other fractions. Several biochemical assays were used to screen antioxidant properties such as reducing power, 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity, NBT/XO superoxide system and inhibition of DCF/AAPH peroxyl radicals. Among the six mushroom extracts, the EtOAc fraction from P. pini (CY001) showed the most potent DPPH radical, superoxide radical, and peroxyl radical scavenging activities, with $IC_{50}$ values of $11.49\;{\mu}g/ml$, $8.32\;{\mu}g/ml$, and $1.91\;{\mu}g/ml$, respectively. The EtOAc fraction of P. pini (CY001) significantly inhibited enzymatic lipid peroxidation and effectively attenuated LPS-induced NO production of RAW 264.7 cells without cytotoxicity. We also found that the EtOAc fraction had a significant hepato-protectant effect on tacrine-induced cytotoxicity in HepG2 cells. These findings suggest that P. pini (CY001) may have potential as a natural antioxidant, which contains compound(s) with radical scavenging activity.

PRIP, a Novel Ins(1,4,5)P3 Binding Protein, Functional Significance in Ca2+ Signaling and Extension to Neuroscience and Beyond

  • Kanematsu, Takashi;Takeuchi, Hiroshi;Terunuma, Miho;Hirata, Masato
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.305-314
    • /
    • 2005
  • Investigation of chemically synthesized inositol 1,4,5-trisphosphate [$Ins(1,4,5)P_3$] analogs has led to the isolation of a novel binding protein with a molecular size of 130 kDa, characterized as a molecule with similar domain organization to phospholipase C-${\delta}1$ (PLC-${\delta}1$) but lacking the enzymatic activity. An isoform of the molecule was subsequently identified, and these molecules have been named PRIP (PLC-related, but catalytically inactive protein), with the two isoforms named PRIP-1 and -2. Regarding its ability to bind $Ins(1,4,5)P_3$ via the pleckstrin homology domain, the involvement of PRIP-1 in $Ins(1,4,5)P_3$-mediated $Ca^{2+}$ signaling was examined using COS-1 cells overexpressing PRIP-1 and cultured neurons prepared from PRIP-1 knock-out mice. Yeast two hybrid screening of a brain cDNA library using a unique N-terminus as bait identified GABARAP ($GABA_A$ receptor associated protein) and PP1 (protein phosphatase 1), which led us to examine the possible involvement of PRIP in $GABA_A$ receptor signaling. For this purpose PRIP knock-out mice were analyzed for $GABA_A$ receptor function in relation to the action of benzodiazepines from the electrophysiological and behavioral aspects. During the course of these experiments we found that PRIP also binds to the b-subunit of $GABA_A$ receptors and PP2A (protein phosphtase 2A). Here, we summarize how PRIP is involved in $Ins(1,4,5)P_3$-mediated $Ca^{2+}$ signaling and $GABA_A$ receptor signaling based on the characteristics of binding molecules.

Biosynthetic Regulation and Enzymatic Properties of $\beta$-Glucosidase from Cellulomonas sp. CS 1-1 (Cellulomonas sp. CS1-1으로 부터의 $\beta$-Glucosidase의 합성조절과 그의 효소학적 성질)

  • Lee, Hee-Soon;Min, Kyung-Hee;Bae, Moo
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.2
    • /
    • pp.119-125
    • /
    • 1988
  • $\beta$-Glucosidase of Cellulomonas sp. CS1-1 in cellular compartment was localized with cell-bound form while Avicelase and carboxymethylcellulase (CMCase) were appeared with extracellular enzyme. Cell growth on cellulose or CMC minimal broth was increased by glucose addition. $\beta$-Glucosidase production on cellobiose or CMC minimal broth was repressed by the addition of glucose. However, on CMC minimal broth, the enzyme production was specially stimulated by cellobiose addition. $\beta$-Glucosidase production was also induced by CMC, starcth and maltose compared with glycerol, arabinose, xylose and trehalose. From the above results, it was concluded that glucose effect on $\beta$-glucosidase biosynthesis showed catabolite repression, but enzyme production was induced by cellobiose, CMC, and starch, indicating that $\beta$-glucosidase is inducible enzyme. Yeast extract stimulated $\beta$-glucosidase production more than peptone and ammonium sulfate. $\beta$-Glucosidase activity was increased with 50mM MgCl$_2$in 10mM potassium phosphate buffer (pH 7.0). Optimum conditions for enzyme activities were pH 6.0 and 42$^{\circ}C$, Km value of $\beta$-glucosidase for p-nitrophenyl-$\beta$-D-glucosidase was 0.256mM and Ki for $\beta$-D(+)-glucose was 9.0mM.

  • PDF