• 제목/요약/키워드: Enzymatic activity

검색결과 1,482건 처리시간 0.03초

Bifidobacterium sp. Int-57이 생산하는 ${\beta}-xylosidase$의 생산특성 (Production of ${\beta}-xylosidase$ from Bifidobacterium sp. Int-57)

  • 강동현;이계호;지근억
    • 한국식품과학회지
    • /
    • 제25권2호
    • /
    • pp.89-93
    • /
    • 1993
  • 한국인의 분변으로부터 분리된 Bifidobacterium sp. Int-57은 다른 장내세균에 비해 ${\beta}-xylosidase$의 높은 역가를 보였으며, xylooligomer의 bifidogenic factor의 유용성을 고려하였을 때 효소생산에 초점을 둔 결과 최적 탄소원으로는 xylose였는데, 일반적으로 최종생산물은 feedback inhibition, feedback repression 등으로 효소 생산을 억제하는 일반 이론과는 상이한 결과를 보였다. 또한 xylose는 1.1%일 때 가장 높은 효소역가를 보였다. 질소원으로서는 yeast extract였고, 그 농도가 0.04%일 때, 무기염류 면에서는 $CoCl_2$였고, 농도가 0.0003%일 때 ${\beta}-xylosidase$의 최대 생산을 보였다.

  • PDF

Aspergillus niger에 의한 ${\alpha}-Galactosidase$의 생산 및 효소적 특성 (Porduction and Enzymatic Characteristics of ${\alpha}-Galactosidase$ from Aspergillus niger)

  • 전향숙;이서래
    • 한국식품과학회지
    • /
    • 제20권1호
    • /
    • pp.79-84
    • /
    • 1988
  • 대두(大豆)중에 존제하는 장내(腸內) 가스 발생인자인 raffinose와 stachyose의 제거에 이용될 수 있는 Aspergillus niger의 ${\alpha}$-galactosidase는 Czapeck-Dox 액체배지와 밀기울 배지에서 5일간 배양하였을 때 효소생성이 제일 높았다. Czapeck-Dox 액체배양에서 raffinose와 $NaNO_3$가 효소생산에 가장 효과적인 탄소원과 질소원으로 나타났으며 밀기울 배양에서는 질소원 또는 탄소원의 첨가효과가 없었다. 생성된 조효소(組酵素)용액의 작용 최적 pH는 4.0-5.0, 안정도 최적 pH는 3.5-6.5, 최적온도는 $40-50^{\circ}C$ 였다. 합성기질인 p-nitrophenyl-${\alpha}$-D-galactoside에 대한 Michaelis상수는 0.42mM, 최대반응속도는 152${\mu}moles$ substrate/min/kg (고체배지)이었다. $HgCl_2$는 강력한 비경쟁 저해제로 작용하였고 p-chloromercuribenzoate는 낮은 농도에서 경쟁 저해제로 작용하였다. 조효소 용액은 raffinose와 stachyose를 완전 분해하여 단당류 만을 생성하였다.

  • PDF

Modulation of Pacemaker Potentials by Pyungwi-San in Interstitial Cells of Cajal from Murine Small Intestine - Pyungwi-San and Interstitial Cells of Cajal -

  • Kim, Jung Nam;Song, Ho Jun;Lim, Bora;Kwon, Young Kyu;Kim, Byung Joo
    • 대한약침학회지
    • /
    • 제16권1호
    • /
    • pp.43-49
    • /
    • 2013
  • Objective: Pyungwi-san (PWS) plays a role in a number of physiologic and pharmacologic functions in many organs. Interstitial cells of Cajal (ICCs) are pacemaker cells that generate slow waves in the gastrointestinal (GI) tract. We aimed to investigate the beneficial effects of PWS in mouse small-intestinal ICCs. Methods: Enzymatic digestion was used to dissociate ICCs from the small intestine of a mouse. The whole-cell patch-clamp configuration was used to record membrane potentials from the cultured ICCs. Results: ICCs generated pacemaker potentials in the GI tract. PWS produced membrane depolarization in the current clamp mode. Pretreatment with a $Ca^{2+}$-free solution and a thapsigargin, a $Ca^{2+}$-ATPase, inhibitor in the endoplasmic reticulum, eliminated the generation of pacemaker potentials. However, only when the thapsigargin was applied in a bath solution, the membrane depolarization was not produced by PWS. Furthermore, the membrane depolarizations due to PWS were inhibited not by U-73122, an active phospholipase C inhibitor, but by chelerythrine and calphostin C, protein kinase C inhibitors. Conclusions: These results suggest that PWS might affect GI motility by modulating the pacemaker activity in the ICCs.

New Performance from an Old Member: SNP Assay and de Novo Sequencing Mediated by Exo+ DNA Polymerases

  • Zhang, Jia;Li, Kai
    • BMB Reports
    • /
    • 제37권3호
    • /
    • pp.269-274
    • /
    • 2004
  • DNA polymerases without the 3' exonuclease function ($exo^-$ pol) have been widely used in sequencing and SNP genotyping. As a major player that expedited the coming of the postgenomic era, $exo^-$ polymerases worked remarkably well in the Human Genome Sequencing Project. However, it has become a challenge for this class of polymerases to efficiently screen the large number of SNPs that are found in the human genome. For more than three decades it has been recognized that polymerase fidelity varied according to the presence of proofreading activity that is mediated by its internal 3' exonuclease. Polymerases with proofreading function are famous for their high fidelity in DNA replication both in vivo and in vitro, but this well-known class of polymerases has been almost completely neglected in genetic analysis in the postgenomic era. We speculate that $exo^+$ polymerases may exhibit higher nucleotide identification ability when compared to $exo^-$ polymerases for an in vitro genetic analysis. With the application of $exo^+$ polymerases in SNP assays, a novel mechanism for the maintenance of DNA replication, the on/off switch, was discovered. Two new SNP assays have been developed to carry out genome-wide genotyping, taking advantage of the enzymatic properties of $exo^+$ polymerases. Furthermore, the on/off switch mechanism embodies a powerful nucleotide identification ability, which can be used to discriminate the bases that are upstream of the 3' terminus, and thus defines a new concept in de novo sequencing technology. Application of $exo^+$ polymerases to genetic analysis, and especially SNP assays, will greatly accelerate the pace to personalized medicine.

Comparative Analysis of Defense Responses in Chocolate Spot-Resistant and -Susceptible Faba Bean (Vicia faba) Cultivars Following Infection by the Necrotrophic Fungus Botrytis fabae

  • El-Komy, Mahmoud H.
    • The Plant Pathology Journal
    • /
    • 제30권4호
    • /
    • pp.355-366
    • /
    • 2014
  • In this study, resistance responses were investigated during the interaction of Botrytis fabae with two faba bean cultivars expressing different levels of resistance against this pathogen, Nubaria (resistant) and Giza 40 (susceptible). Disease severity was assessed on leaves using a rating scale from 1 to 9. Accumulation levels of reactive oxygen species (ROS), lipid peroxidation and antioxidant enzymes (superoxide dismutase, catalase and ascorbate peroxidase) were measured in leaf tissues at different times of infection. The expression profiles of two pathogenesis-related proteins (PRPs) encoded by the genes PR-1 and ${\beta}$-1,3-glucanase were also investigated using reverse transcription RT-PCR analysis. The accumulation of these defense responses was induced significantly in both cultivars upon infection with B. fabae compared with un-inoculated controls. The resistant cultivar showed weaker necrotic symptom expression, less ROS accumulation, a lower rate of lipid peroxidation and higher activity of the enzymatic ROS scavenging system compared with susceptible cultivar. Interestingly, ROS accumulated rapidly in the resistant leaf tissues and peaked during the early stages of infection, whereas accumulation was stronger and more intense in the susceptible tissues in later stages. Moreover, the response of the resistant cultivar to infection was earlier and stronger, exhibiting high transcript accumulation of the PR genes. These results indicated that the induction of oxidant/antioxidant responses and the accumulation of PRPs are part of the faba bean defense mechanism against the necrotrophic fungus B. fabae with a different intensity and timing of induction, depending on the resistance levels.

핵전이법에 의해 형성된 Saccharomycopsis 속과 Saccharomyces 속의 잡종에서 glucoamylase 생산에 관한 연구 (Production of Glucoamylase from Hybrid Constructed by Intergenic Nuclear Transfer between Saccharomycopsis sp. and Saccharomyces sp.)

  • 양영기;임채영;김종권;문명님;이영하
    • 미생물학회지
    • /
    • 제37권3호
    • /
    • pp.182-188
    • /
    • 2001
  • 핵전이에 의해 형성된 잡종의 유도 배양액으로부터 glucoamylase를 정제하고 몇몇의 효소 특성을 조사하였다. 효소는 76배 정제하였고, ammonium sulfate fractionation, Sephadex G-150 gel permeation chromatography 그리고 DEAE-Sephadex A-50 ion exchange chromatography의 순서 배양액으로부터 정제한 결과 전반적인 수율은 16%를 나타내었다. SDS-polyacrylamide gel electrophoresis와 Sephadex G-150 gel permeation chromatography에 의하여 정제된 glucoamylase의 분자량을 측정한 결과 57.5 kDa를 나타내었으며, 정제된 효소의 최적 pH와 온도는 각각 5.0과 $40^{\circ}C$로 나타났다. 또한 가용성 전분에 대한 Km값은 2.6 mg/ml을 나타내었으며, 정제된 효소는 $Ca^{2+}$, EDTA, $Co^{2+}$, $Mg^{2+}$, 그리고 $Mn^{2+}$의 존재하에 활성이 중진됨을 알수 있었다.

  • PDF

미강 단백질 가수분해물로부터 Ca, Fe 결합된 peptide 제조 (Preparation for Calcium and Iron-binding Peptides from Rice Bran Protein Hydrolysates)

  • 전소정;이지혜;송경빈
    • Journal of Applied Biological Chemistry
    • /
    • 제53권3호
    • /
    • pp.174-178
    • /
    • 2010
  • 탈지 미강으로부터 미강단백질을 추출하고 상업용 단백분해 효소로 가수분해하고 한외여과하여 얻어진 미강단백질 가수분해물을 Sephadex G-15로 분리하여 얻어진 peptide fraction에 칼슘, 철분을 binding하여 칼슘, 철분 함유 peptide를 제조하였다. 추출된 탈지 미강 단백질의 분자량은 10~66 kDa에 분포하고 있었다. 추출된 단백질을 Flavourzyme으로 가수분해 시, 최적 가수분해 시간은 6시간이었으며, 5kDa 이하로 한외여과 하여 얻어진 peptide를 Sephadex G-15로 분획한 결과 4개의 major peak를 얻었는데, 각 fraction의 칼슘, 철분을 binding한 결과 Ca/peptide는 FI에서, Fe/peptide는 F2에서 가장 많은 함량을 나타내었다. 본 연구 결과 얻어진 칼슘, 철분 binding peptide는 biomineral 기능성 식품의 소재로써 식품산업에 활용될 수 있다고 판단된다.

Cellulose Hydrolysis by Digestive Enzymes of Reticulitermes speratus, a Native Termite from Korea

  • Lee, Young-Min;Kim, Hyun-Jung;Cho, Moon-Jung;Shin, Keum;Kim, Young-Kyoon;Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • 제38권2호
    • /
    • pp.140-148
    • /
    • 2010
  • This study was to investigate the enzymatic hydrolysis of cellulose using the cellulase from whole body of the native termite collected in Milyang-si, Kyungsangnamdo, Korea. In the results, optimal temperature and pH for the enzyme of native termites were $45^{\circ}C$ and pH 5.5 for both endo-${\beta}$-1, 4-glucanase and ${\beta}$-glucosidase. Enzyme activity of the termite enzyme was shown $8.8{\times}10^{-2}\;FPU/m{\ell}$. And the highest glucose hydrolysis rate of cellulose by the digestive enzyme from test termites was 24.5% based on the glucan, comparing 59.7% by commercial enzyme (only celluclast 1.5 L) at 1% (w/v) substrate and 36 hours in hydrolysis time. This hydrolysis rate by the digestive enzyme from test termites was comparatively high value in 41% level of the commercial enzyme. When cellulose was hydrolyzed by the digestive enzyme of the native termite, glucose hydrolysis was almost completed in 12 hours which was the considerably reduced time for cellulose hydrolysis. It was suggested that the quiet short reaction time for cellulose hydrolysis by the enzyme from native termite could be a very high advantage for development of hydrolysis cellulase for lignocellulosic biomass.

유기용매 이상계에서 Thermolysin에 의한 아스파탐 전구체 생산 (Synthesis of an Aspartame Precursor Using Thermolysin in Organic Two-Phase System)

  • 이인영;안경섭;이선복
    • 한국미생물·생명공학회지
    • /
    • 제20권1호
    • /
    • pp.61-67
    • /
    • 1992
  • 유기용매 이상계에서의 thermolysin을 사용하여 아스파탐 전구체 합성시 pH, 온도, 기질농도, 그리고 유기용매상에 대한 수용액상의 부비피 ($\alpha$)등의 변화에 따른 기질의 분해 반응, 효소의 안정성, 그리고 Z-APM 합성에 미치는 복합적인 영향을 조사함으로써 반응조건의 최적화를 도모하였다. 유기용매 이상계에서의 L-PM.HCL의 자연분해는 수용액에서보다 훨씬 느리게 일어나며, 또한 $\alpha$가 증가할 수록 분해속도가 감소하는 것을 알 수 있었다.

  • PDF

Sirt1 Promotes DNA Damage Repair and Cellular Survival

  • Song, Seung-Hyun;Lee, Mi-Ok;Lee, Ji-Seon;Oh, Je-Sok;Cho, Sung-Uk;Cha, Hyuk-Jin
    • Biomolecules & Therapeutics
    • /
    • 제19권3호
    • /
    • pp.282-287
    • /
    • 2011
  • Sirt1, a nicotinamide adenine dinucleotide ($NAD^+$)-dependent histone deacetylase, is known to deacetylate a number of proteins that are involved in various cellular pathways such as the stress response, apoptosis and cell growth. Modulation of the stress response by Sirtuin 1 (Sirt1) is achieved by the deacetylation of key proteins in a cellular pathway, and leads to a delay in the onset of cancer or aging. In particular, Sirt1 is known to play an important role in maintaining genomic stability, which may be strongly associated with a protective effect during tumorigenesis and during the onset of aging. In these studies, Sirt1 was generated in stably expressing cells and during the stimulation of DNA damage to examine whether it promotes survival. Sirt1 expressing cells facilitated the repair of DNA damage induced by either ionizing radiation (IR) or bleomycin (BLM) treatment. Fastened damaged DNA repair in Sirt1 expressing cells corresponded to prompt activation of Chk2 and ${\gamma}$-H2AX foci formation and promoted survival. Inhibition of Sirt1 enzymatic activity by a chemical inhibitor, nicotinamide (NIC), delayed DNA damage repair, indicating that promoted DNA damage repair by Sirt1 functions to induce survival when DNA damage occurs.