Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.06.2014.0050

Comparative Analysis of Defense Responses in Chocolate Spot-Resistant and -Susceptible Faba Bean (Vicia faba) Cultivars Following Infection by the Necrotrophic Fungus Botrytis fabae  

El-Komy, Mahmoud H. (Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Kingdom of Saudi Arabia Plant Pathology Institute, Agriculture Research Center (ARC))
Publication Information
The Plant Pathology Journal / v.30, no.4, 2014 , pp. 355-366 More about this Journal
Abstract
In this study, resistance responses were investigated during the interaction of Botrytis fabae with two faba bean cultivars expressing different levels of resistance against this pathogen, Nubaria (resistant) and Giza 40 (susceptible). Disease severity was assessed on leaves using a rating scale from 1 to 9. Accumulation levels of reactive oxygen species (ROS), lipid peroxidation and antioxidant enzymes (superoxide dismutase, catalase and ascorbate peroxidase) were measured in leaf tissues at different times of infection. The expression profiles of two pathogenesis-related proteins (PRPs) encoded by the genes PR-1 and ${\beta}$-1,3-glucanase were also investigated using reverse transcription RT-PCR analysis. The accumulation of these defense responses was induced significantly in both cultivars upon infection with B. fabae compared with un-inoculated controls. The resistant cultivar showed weaker necrotic symptom expression, less ROS accumulation, a lower rate of lipid peroxidation and higher activity of the enzymatic ROS scavenging system compared with susceptible cultivar. Interestingly, ROS accumulated rapidly in the resistant leaf tissues and peaked during the early stages of infection, whereas accumulation was stronger and more intense in the susceptible tissues in later stages. Moreover, the response of the resistant cultivar to infection was earlier and stronger, exhibiting high transcript accumulation of the PR genes. These results indicated that the induction of oxidant/antioxidant responses and the accumulation of PRPs are part of the faba bean defense mechanism against the necrotrophic fungus B. fabae with a different intensity and timing of induction, depending on the resistance levels.
Keywords
antioxidant enzymes; chocolate spot; defense responses; PR-proteins; reactive oxygen species; Vicia faba;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chavan, V., Bhargava, S. and Kamble, A. 2013. Temporal modulation of oxidant and antioxidative responses in Brassica carinata during ${\beta}$-aminobutyric acid-induced resistance against Alternaria brassicae. Physiol. Mol. Plant Pathol. 83:35-39.   DOI   ScienceOn
2 Cheng, Y., Zhang, H., Yao, J., Wang, X., Xu, J., Han, Q., Wei, G., Huang, L. and Kang, Z. 2012. Characterization of non-host resistance in broad bean to the wheat stripe rust pathogen. BMC Plant Biol. 12:96.   DOI
3 Cota, I. E., Troncoso-Rojas, R., Sotelo-Mundo, R., Sanchez-Estrada, A. and Tiznado-Hernandez, M. E. 2007. Chitinase and ${\beta}$-1,3-glucanase enzymatic activities in response to infection by Alternaria alternata evaluated in two stages of development in different tomato fruit varieties. Sci. Hortic. 112:42-50.   DOI   ScienceOn
4 Dangl, J. and Jones, J. D. G. 2001. Plant pathogens and integrated defense responses to pathogens. Nature 411:826-834.   DOI   ScienceOn
5 Debona, D., Rodrigues, F. a., Rios, J. A. and Nascimento, K. J. T. 2012. Biochemical changes in the leaves of wheat plants infected by Pyricularia oryzae. Phytopathology 102:1121-1129.   DOI   ScienceOn
6 Garcia-Limones, C., Hervas, A., Navas-Cortes, J. A., Jimenez-Diaz, R. M. and Tena, M. M. 2002. Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceris. Physiol. Mol. Plant Pathol. 61:325-337.   DOI   ScienceOn
7 Ebel, J. and Cosio, E. G. 1994. Elicitors of plant defense responses. Int. Rev. Cytol. 148:1-36.   DOI
8 Ebrahim, S., Ushaa, K. and Singh, B. 2011. Pathogenesis-related (PR) proteins: Chitinase and ${\beta}$-1,3-glucanase in defense mechanism against malformation in mango (Mangifera indica L.). Sci. Hortic.130:847-852.   DOI   ScienceOn
9 Ehsani-Moghaddam, B., Charles, M. T., Carisse, O. and Khanizadeh, S. 2006. Superoxide dismutase responses of strawberry cultivars to infection by Mycosphaerella fragariae. J. Plant Physiol. 163:147-153.   DOI   ScienceOn
10 Ge, Y., Guest, D. I. and Bi, Y. 2014. Differences in the Induction of defence responses in resistant and susceptible muskmelon plants infected with Colletotrichum lagenarium. J. Phytopathol. 162:48-54.   DOI   ScienceOn
11 Gill, S. S. and Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48:909-930.   DOI   ScienceOn
12 Gomez, K. A. and Gomez, A. A. 1984. Statistical Procedures for Agricultural Research, 2nd edn. New York: John Wiley, 680pp.
13 Govrin, E. M. and Levine, A. 2000. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr. Biol. 10:751-757.   DOI   ScienceOn
14 Hanounik, S. B. and Maliha, N. 1986. Horizontal and vertical resistance in Vicia faba to chocolate spot caused by Botrytis fabae. Plant Dis. 70:770-773.   DOI
15 Hanounik, S. B. and Robertson, L. D. 1988. New sources of resistance in Vicia faba to chocolate spot caused by Botrytis fabae. Plant Dis. 72:696-698.   DOI
16 Khalil, S. A. and Harrison, J. G. 1981. Methods of evaluating faba bean materials for chocolate spot. FABIS Newsletter 3: 51-52.
17 Khalil, S. A., El-Hady, M. M., Dissouky, R. F., Amer, M. I. and Omar, S. A. 1993. Breeding for high yielding ability with improved level of resistance to chocolate spot (Botrytis fabae) disease in faba bean (Vicia faba). J. Agric. Sci. Mansoura Univ. 18:1315-1328.
18 Heath, R. L. and Packer, L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125:189-198.   DOI   ScienceOn
19 Hong, J. K., Lee, S. C. and Hwang, B. K. 2005. Activation of pepper basic PR-1 gene promoter during defense signaling to pathogen, abiotic and environmental stresses. Gene 356:169-180.   DOI   ScienceOn
20 ICARDA, 1986. Screening Techniques for Disease Resistance in Faba bean. International Center for Agricultural Research in the Dry Areas, Aleppo, Syria, 59pp.
21 Laloi, C., Apel, K. and Danon, A. 2004. Reactive oxygen signalling: the latest news. Curr. Opin. Plant Biol. 7:323-328.   DOI   ScienceOn
22 Lamb, C. and Dixon, R. A. 1997. The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:251-275.   DOI   ScienceOn
23 Leach, R. and Moore, K. G. 1966. Sporulation of Botrytis fabae on agar culture. T. Brit. Mycol. Soc. 49:593-601.   DOI
24 Malolepsza, U. and Urbanek, H. 2000. The oxidants and antioxidant enzymes in tomato leaves treated with o-hydroxyethylorutin and infected with Botrytis cinerea. Eur. J. Plant Pathol. 106:657-665.   DOI   ScienceOn
25 Mandal, S., Das, R. K. and Mishra, S. 2011. Differential occurrence of oxidative burst and antioxidative mechanism in compatible and incompatible interactions of Solanum lycopersicum and Ralstonia solanacearum. Plant Physiol. Biochem. 49:117-123.   DOI   ScienceOn
26 Mitsuhara, I., Iwai, T. Seo, S., Yanagawa, Y., Kawahigasi, H., Hirose, S., Ohkawa, Y. and Ohashi, Y. 2008. Characteristic expression of twelve rice PR1 family genes in response to pathogen infection, wounding, and defense-related signal compounds (121/180). Mol. Genet. Genomics 279:415-427.   DOI   ScienceOn
27 Mellersh, D. G., Foulds, I.V ., Higgins, V. J. and Heath, M. C. 2002. $H_2O_2$ plays different roles in determining penetration failure in three diverse plant-fungal interactions. Plant J. 29: 257-268.   DOI   ScienceOn
28 Mandal, S., Mitra, A. and Mallick, N. 2008. Biochemical characterization of oxidative burst during interaction between Solanum lycopersicum and Fusarium oxysporum f. sp. lycopersici. Physiol. Mol. Plant Pathol. 72:56-61.   DOI   ScienceOn
29 Mayer, A. M., Staples, R. C. and Gil-ad, N. L. 2001. Mechanisms of survival of necrotrophic fungal plant pathogens in hosts expressing the hypersensitive response. Phytochemistry 58:33-41.   DOI   ScienceOn
30 Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7:405-410.   DOI   ScienceOn
31 Nakano, Y. and Asada, K. 2001. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867-880.
32 Nikraftar, F., Taheri, P., Rastegar, M. F. and Tarighi, S. 2013. Tomato partial resistance to Rhizoctonia solani involves antioxidative defense mechanisms. Physiol. Mol. Plant Pathol. 81: 74-83.   DOI   ScienceOn
33 Park, C. J., An, J. M., Shin, Y. C., Kim, K. J., Lee, B. J. and Peak, K. H. 2004. Molecular characterization of pepper germin-like protein as the novel PR-16 family of pathogenesis-related proteins isolated during resistance response to viral and bacterial infection. Planta 219:797-806.
34 Rauscher, M., Adam, A. L., Wirtz, S., Guggenheim, R., Mendgen, K. and Deising, H. B. 1999. PR-1 protein inhibits the differentiation of rust infection hyphae in leaves of acquired resistant broad bean. Plant J. 19:625-633.   DOI   ScienceOn
35 Rhaiem, A., Cherif, M., Kharrat, M., Cherif, M. and Harrabi, M. 2002. New faba bean genotypes resistant to chocolate spot caused by Botrytis fabae. Phytopathol. Mediterr. 41:99-108.
36 Patykowski, J. and Urbanek, H., 2003. Activity of enzymes related to $H_2O_2$ generation and metabolism in leaf apoplastic fraction of tomato leaves infected with Botrytis cinerea. J. Phytopathol. 151:153-161.   DOI   ScienceOn
37 Peng, M. and Kuc, J. 1992. Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf discs. Phytopathology 82:696-699.   DOI
38 Sarowar, S., Kim, Y. J., Kim, E. N., Kim, K. D. and Hwang, B. K. 2005. Overexpression of a pepper basic pathogenesis-related protein 1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses. Plant Cell Rep. 24:216-224.   DOI   ScienceOn
39 SAS Institute Inc., 2003. SAS/STATA Guide for Personal Computers Version 9.1 edition. SAS Institute, Carry NC, USA.
40 Segarra, G., Elena, G. and Trillas, I. 2013. Systemic resistance against Botrytis cinerea in Arabidopsis triggered by an olive marc compost substrate requires functional SA signaling. Physiol. Mol. Plant Pathol. 82:46-50.   DOI   ScienceOn
41 Shaner, G. and Finney, R. E. 1977. The effect of nitrogen fertilization on the expression of slow mildewing resistance in knox wheat. Phytopathology 67:1051-1056.
42 Unger, C., Kleta, S., Jandl, G. and von Tiedemann, A. 2005. Suppression of the defence related oxidative burst in bean leaf tissue and bean suspension cells by the necrotrophic pathogen Botrytis cinerea. J. Phytopathol. 153:15-26.   DOI   ScienceOn
43 Shi, H., Cui, R., Hu, B., Wang, X., Zhang, S., Liu, R. and Dong, H. 2011. Overexpression of transcription factor AtMYB44 facilitates Botrytis infectionin Arabidopsis. Physiol. Mol. Plant Pathol. 76:90-95.   DOI   ScienceOn
44 van Loon, L. C. 1997. Induced resistance in plants and the role of pathogenesis-related proteins. Eur. J. Plant Pathol. 103:753-765.   DOI   ScienceOn
45 Sillero, J. C., Villegas-Fernandez, A. M., Thomas, J., Rojas-Molina, M. M., Emeran, A. A., Fernandez-Aparicio, M. and Rubiales, D. 2010. Faba bean breeding for disease resistance. Field Crops Res. 115:297-307.   DOI   ScienceOn
46 van Loon, L. C. and Van Strien, E. A. 1999. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 proteins. Physiol. Mol. Plant Pathol. 55: 85-97.   DOI   ScienceOn
47 van Loon, L. C., Rep, M. and Pieterse, C. M. J. 2006. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44:135-162.   DOI   ScienceOn
48 Velikova, V., Yordanov, I. and Edreva, A. 2000. Oxidative stress and some antioxidant systems in acid rain treated bean plants: protective role of exogenous polyamines. Plant Sci. 151:59-66.   DOI   ScienceOn
49 Villegas-Fernandez, A. M., Sillero, J. C., Emeran, A. A., Winkler, J., Raffiot, B., Tay, J., Flores, F. and Rubiales, D. 2010. Identification and multi-environment validation of resistance to Botrytis fabae in Vicia faba. Field Crops Res. 114:84-90.
50 von Tiedemann, A. 1997. Evidence for a primary role of oxygen species in induction of host cell death during infection of bean leaves with Botrytis cinerea. Physiol. Mol. Plant Pathol. 50:151-166.   DOI   ScienceOn
51 Aime, S., Cordier, C., Alabouvette, C. and Olivain, C. 2008. Comparative analysis of PR gene expression in tomato inoculated with virulent Fusarium oxysporum f. sp. lycopersici and the biocontrol strain F. oxysporum Fo47. Physiol. Mol. Plant Pathol. 73:9-15.   DOI   ScienceOn
52 Attia, M. F., Abou-Zeid, N. M., Abada, K. A., Soliman, M. H. and El-Badawy, N. F. 2007. Isolation of chitinase gene induced during infection of Vicia faba by Botrytis fabae. Arab J. Biotech. 10:289-300.
53 Abo-Hegazy, S. R. E., El-Badawy, N. F., Mazen, M. M. and Abd El-Menem, H. 2012. Evaluation of Some faba bean genotypes against chocolate spot disease using cDNA fragments of chitinase gene and some traditional methods. Asian J. Agric. Res. 6:60-72.   DOI
54 Abou-Zeid, N. M., Moustafa, M. S. H., Hassanien, A. M. and Ez-El-Din, I. 1990. Control of chocolate spot disease of faba bean and the effect of fungicides on the behavior of the causal fungus. Agric. Res. Rev. 68:411-421.
55 Apel, K. and Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55:373-399.   DOI   ScienceOn
56 Asselbergh, B., Curvers, K., Franca, S. C., Audenaert, K., Vuylsteke, M., Breusegem, F. V. and Hofte, M. 2007. Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol. 144: 1863-1877.   DOI   ScienceOn
57 Cakmak, I. and Marschner, H. 1992. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol. 98:1222-1227.   DOI   ScienceOn
58 Beauchamp, C. and Fridovich, I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44:276-286.   DOI   ScienceOn
59 Bertini, L., Leonardi, L., Caporale, C., Tucci, M., Cascone, N., Di Berardino, I., Buonocore, V. and Caruso, C. 2003. Pathogen-responsive wheat PR4 genes are induced by activators of systemic acquired resistance and wounding. Plant Sci. 164:1067-1078.   DOI   ScienceOn
60 Bolwell, P. G., Bindschedler, L. V., Blee, K. A., Butt, V. S., Davies, D. R., Gardner, S. L., Gerrish, C. and Minibayeva, F. 2002. The apoplastic oxidative burst in response to biotic stress in plants: a three component system. J. Exp. Bot. 53: 1367-1376.   DOI   ScienceOn
61 Bouhassan, A., Sadiki, M. and Tivoli, B. 2004. Evaluation of a collection of faba bean (Vicia faba L.) genotypes originating from the Maghreb for resistance to chocolate spot (Botrytis fabae) by assessment in the field and laboratory. Euphytica 135:55-62.   DOI   ScienceOn
62 Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:1151-1154.
63 Bradley, D. J., Kjellbom, P. and Lamb, C. J. 1992. Elicitor- and wound-induced oxidative crosslinking of a proline-rich plant cell wall protein; a novel, rapid defence response. Cell 70:21-30.   DOI   ScienceOn
64 Torres, A. M., Roman, B., Avila, C. M., Satovic, Z., Rubiales, D., Sillero, J. C., Cubero, J. I. and Moreno, M. T. 2004. Faba bean breeding for resistance against biotic stresses, towards application of marker technology. Euphytica 147:67-80.
65 Mauch, F., Mauch-Mani, B. and Boller, T. 1988. Antifungal hydrolases in pea tissues. II. Inhibition of fungal growth by combinations of chitinase and b-1,3-glucanase. Plant Physiol. 88:936-942.   DOI   ScienceOn