• Title/Summary/Keyword: Environmental-friendly material

Search Result 443, Processing Time 0.025 seconds

Study of Simultaneous Analysis of Indicator Components of DTP(Digital Textile Printing) Textile Products Using HPLC-MS/MS - Focusing on Natural Dyes - (HPLC-MS/MS를 활용한 DTP(Digital Textile Printing) 제품의 지표성분 동시분석법 연구 - 천연염료를 중심으로 -)

  • Lee, Wonkyoung;Sung, Eunji;Moon, Joung Ryul;Kim, Miji;Kim, Jonghoon
    • Fashion & Textile Research Journal
    • /
    • v.23 no.6
    • /
    • pp.844-851
    • /
    • 2021
  • Due to the increase in consumers' interest about well-being, interest in eco-friendly products has been increasing due to the harmful effects of various harmful substances contained in textile products and environmental issues. As a result, natural dyes of less potential risk than synthetic dyes and digital textile printing(DTP) textile products with less environmental pollution are drawing attention. However, due to the lack of evaluation criteria for DTP textile products with natural ink and the nature of many colors are stacked layer by layer for dying, the need for simultaneous analysis is emerging. To evaluate whether the natural dye is derived from natural ingredients, the biocarbon content is analyzed. However, in the case of ink made using natural dyes and DTP textile products using natural ink, it is difficult to analyze the biocarbon content due to the limitation of the presence of a small amount of dye contained therein. In this study, we were shown the possibility of natural derived verification by cross-checking the analytes of natural dyes (Persicaria tinctoria, an indigo dye; Dactylopius coccus, a light red; and Curcum longa L., i.e., turmeric) and natural ink with HPLC-MS/MS. The coefficient of determination was 0.999 or higher, the limit of quantification was 0.647-3.664 ㎍/L and a %RSD of each indicator material was less than 10. Then, the extraction amount of natural dyes for five patterned fabrics was analyzed.

Performance Analysis of Ink for Digital Textile Printing Using Natural Indigo (천연 인디고를 활용한 Digital Textile Printing용 잉크의 성능 분석)

  • Lee, Won Kyoung;Sung, Eun Ji;Moon, Joung Ryul;Ahn, In Yong;Yoon, Kwang Ho;Park, Yoon Cheol;Kim, Jong Hoon
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.202-209
    • /
    • 2021
  • Natural dyes are more expensive than synthetic dyes and the dyeing process, which is mainly immersion of dye, is complicated. For this reason, relatively small-scale production methods were predominant. However, awareness and interest in environmental sustainability is rising globally, and the use of synthetic dyes causes various environmental problems such as wastewater and CO2 emission, so the consumption of natural dyes is increasing. In addition, interest in digital textile printing, an eco-friendly dyeing method that can produce products of various designs and uses less water, is growing. In this study, natural indigo dye (Indigofera tinctoria) was used as a raw material for Digital Textile Printing ink, and 14C (Biocarbon) present in it was measured to confirm whether it was derived from natural ingredients. The performance was confirmed by testing the pH, viscosity, electrical conductivity, surface tension, and particle size analysis of natural indigo ink. In addition, the performance of natural indigo DTP ink and printing fabric was evaluated by inspecting the change in color fastness and corresponding index substances before and after digital printing with natural indigo DTP ink on textiles. Through this, the possibility of commercialization of DTP ink and printing fabric using natural indigo was confirmed.

Preparation and Cleaning Properties of Environmental Friendly Semi-Solvent Cleaning Agents (친환경 준용매계 세정제의 제조와 그 세정 특성)

  • Kang, Doo Whan;Ha, Soonhyo;Han, Jongpil;Lee, Byoung Chul;Yeo, Hak Gue;Bae, Jang Soon;Yeum, Kou-Sul
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.188-193
    • /
    • 2007
  • Semi-solvent type cleaning agents were prepared by mixing naphthenes, natural terpene oil, surfactant and water, and measured their physical properties. And also, cleaning efficiency for flux and grease was measured by gravimetric method. By measuring the physical properties, pH for cleaning agents were 6.0~6.7, surface tension, 27.4~28.4 dyne/cm, and wetting index, 8.65~12.46 (with water), 11.99~17.43 (without water). The cleaning agent composed of naphthene, 30 wt%, natural terpene oil, 45 wt%, surfactant, 13 wt%, co-surfactant, 12 wt%, and water, 0 wt% had the largest wetting index, and shown the most effective cleaning properties for flux (98.66%) and grease (93.44%). The conductivity with $0.5{\sim}0.9{\mu}s/cm$ to the cleaning agent containing small amount of water was found to form W/O type microemulsion.

Effective Costal Environmental Management by Conjugation of Modeling of Bio-Purification and Total Allowable Pollutant Loads in Masan Bay (생물정화기작과 총허용오염부하량을 연계한 마산만의 효율적 해양환경 개선방안)

  • Eom, Ki-Hyuk;Kim, Gui-Young;Lee, Won-Chan;Lee, Dae-In
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.1
    • /
    • pp.38-46
    • /
    • 2012
  • This study carried out current status, characteristics, and problems of coastal environment management on semi-enclosed Masan Bay in Korea and suggests cost-effective and eco-friendly water quality management policy. The pollutants from terrestrial sources into the Bay have apparently environmental pollution problems, such as eutrophication, red tide, and hypoxia. The carrying capacity of the Bay is estimated by hydrodynamic model and ecosystem model, material circulation including bivalve in ecosystem is analyzed by the growth model of bivalve. The resulting reduction in the input load was found to be 50~90%, which is unrealistic. When the efficiency of water quality improvement through bivalve farming was assessed based on the autochthonous COD, 30.7% of the total COD was allochthonous COD and 69.3% was autochthonous COD. The overall autochthonous COD reduction rate by bivalve aquaculture farm was found to be about 6.7%. This study indicate that bivalve farming is about 31% less expensive than advanced treatment facilities that remove both nitrogen and phosphorous.

Characteristics of Greenhouse Gas Emissions with Different Combination Rates of Activated Rice Hull Biochar during Aerobic Digestion of Cow Manure (왕겨 활성 바이오차 혼합 비율에 따른 우분 호기소화 시 온실가스 발생 특성)

  • Ro, YeonHee;Chung, WooJin;Chung, SeokJoo;Jung, InHo;Na, HongSik;Kim, MinSoo;Shin, JoungDu
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.222-227
    • /
    • 2020
  • BACKGROUND: Among the biomass conversion techniques of livestock manure, composting process is a method of decomposing organic matter through microorganisms, and converting it into fertilizer in soil. The aerobic composting process is capable of treating cow manure in large quantities, and produces greenhouse gas as CO2 and N2O, although it has economical benefit. By using the activated rice hull biochar, which is a porous material, it was intended to mitigate the greenhouse gas emissions, and to produce the compost of which quality was high. Objective of this experiment was to estimate CO2 and N2O emissions through composting process of cow manure with different cooperated biochar contents. METHODS AND RESULTS: The treatments of activated rice hull biochar were set at 0%, 5%, 10% and 15%, respectively, during composting cow manure. The CO2 emission in the control was 534.7 L kg-1, but was 385.5 L kg-1 at 15% activated rice hull biochar. Reduction efficiency of CO2 emission was estimated to be 28%. N2O emission was 0.28 L kg-1 in the control, but was 0.03 L min-1 at 15% of activated rice hull biochar, estimating about 89% reduction efficiency. CONCLUSION: Greenhouse gas emissions during the composting process of cow manure can be reduced by mixing with 15% of activated rice hull biochar for eco-friendly compost production.

Physical Properties of Insulating Composite Materials Using Natural Cellulose and Porous Ceramic Balls as a Core Materials (천연섬유질과 다공성 세라믹볼을 심재로 사용한 복합단열재의 물성)

  • Hwang, Eui-Hwan;Cho, Soung-Jun;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.501-507
    • /
    • 2011
  • To develop environmental-friendly insulating composite materials, natural cellulose and porous ceramic balls were used as core materials and activated Hwangtoh was used as a binder. Various specimens were prepared with different water/binder ratios and core material/binder ratios. The physical properties of these specimens were then investigated through compressive strengths, flexural strengths, absorption test, hot water resistance test, pore analysis, thermal conductivity, and observation of micro-structures using scanning electron microscope. Results showed that the maximum compressive strength varied appreciably with the water/binder ratios and core material/binder ratios, but the flexural strength increased with the core material/binder ratios regardless of water/binder ratios. The compressive strength and the flexural strength measured after the hot water resistance test decreased remarkably compared to those measured before test. The pore analysis measured after the hot water resistance test showed that total pore volume, porosity and average pore diameter decreased, while bulk density increased by the acceleration of hydration reaction of binder in the hot water. The thermal conductivity decreased gradually with an increase of core material/binder ratios. It can be evaluated that the composite insulation materials having good insulating properties and mechanical strengths can be used in the field.

A study on the temperature inside clothing as fundamental data for development of the heat energy harvesting clothing (인체 전력에너지 수확의류 개발을 위한 의복내 온도 측정의 기초적 고찰)

  • Yang, Jin-Hee;Cho, Hyun-Seung;Park, Sun-Hyung;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.16 no.1
    • /
    • pp.125-132
    • /
    • 2013
  • Recently, the consciousness of energy crisis is rapidly growing and sustainable eco-friendly energy sources are becoming issue. Therefore the portable electronic device requires new energy sources for providing continuous power supply and the power energy harvesting system of the human body that enables the power-harvesting research requests anytime, anywhere. One of the sources for energy harvesting is heat energy, which is the difference in temperature of the body and the surrounding environment. We tried to analyze the temperature difference between the environmental temperature and the temperature inside clothing according to the structure of the closed portion. And we examined the temperature difference between the environmental temperature and the temperature inside clothing according to the material of the clothing. The analysis showed that we have been able to get different results at parts of the body in the temperature inside clothing according to the structure of clothing. In upper torso of the chest and back, the temperature inside clothing of 'closed structure' was higher than the temperature inside clothing of 'opened structure'. In the section of arm and leg, it was reduced the difference of temperature inside clothing between 'closed structure' and 'opened structure'. It was particularly noticeable in the section of leg. The results of analysis of the difference between the environmental temperature and the temperature inside clothing according to the material of the clothing, in both cases of the two materials, 'closed structure' was higher than the 'opened structure' in the difference value between the environmental temperature and the temperature inside clothing. There was a difference according to the material in the section of leg. In this study, we outlined the basic guidelines for developing heat energy harvesting clothing by exploring the structure and material of clothing suitable for the heat energy harvesting.

  • PDF

Material Life Cycle Assessment on Mg2NiHx-5 wt% CaO Hydrogen Storage Composites (Mg2NiHx-5 wt% CaO 수소 저장 복합재료의 물질전과정평가)

  • Shin, Hyo-Won;Hwang, June-Hyeon;Kim, Eun-A;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.107-114
    • /
    • 2021
  • Material Life Cycle Assessment (MLCA) was performed to analyze the environmental impact characteristics of the Mg2NiHx-5 wt% CaO hydrogen storage composites' manufacturing process. The MLCA was carried out by Gabi software. It was based on Eco-Indicator 99' (EI99) and CML 2001 methodology. The Mg2NiHx-5 wt% CaO composites were synthesized by Hydrogen Induced Mechanical Alloying (HIMA). The metallurgical, thermochemical characteristics of the composites were analyzed by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), specific surface area analysis (Bruner-Emmett-Teller, BET), and thermogravimetric analysis (TGA). As a result of the CML 2001 methodology, the environmental impact was 78% for Global Warming Potential (GWP) and 22% for Eutrophication Potential (ETP). In addition, as a result of applying the EI 99' methodology, the acidification was the highest at 43%, and the ecotoxicity was 31%. Accordingly, the amount of electricity used in the manufacturing process may have an absolute effect on environmental pollution. Also, it is judged that the leading cause of Mg2NiHx-5 wt% CaO is the addition of CaO. Ultimately, it is necessary to research environmental factors by optimizing the process, shortening the manufacturing process time, and exploring eco-friendly alternative materials.

Static Culture Condition for Production of Bacterial Cellulose, Environment-Friendly Functional Material, by Acetic Acid Bacteria (초산균에 의한 환경친화적 기능성소재인 세균 셀룰로오스 생산을 위한 정치배양조건 최적화)

  • Cho, Kwang-Sik;Lee, Sang-Mee;Jeong, Seong-Yun;Park, Geun-Tae;Lee, Hee-Sup;Hwang, Dae-Youn;Jung, Young-Jin;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.895-902
    • /
    • 2014
  • Bacterial cellulose (BC) has played important role as new functional material for food industry and industrial products based on its unique properties. The interest in BC from static cultures has increased steadily in recent years because of its potential for use in medicine and cosmetics. In this study, we investigated culture condition for BC production by Acetobacter sp. F15 in static culture. The strain F15, which was isolated from decayed fruit, was selected on the basis of BC thickness. The optimal medium compositions for BC production were glucose 7%, soytone 12%, $K_2HPO_4$ 0.2%, $NaH_2PO_4{\cdot}_2H_2O$ 0.2%, lactic acid 0.05% and ethanol 0.3%, respectively. The strain F15 was able to produce BC at $26^{\circ}C-36^{\circ}C$ with a maximum at $32^{\circ}C$. BC production occurred at pH 4.5-8 with a maximum at pH 6.5. Under these conditions, a maximum BC thickness of 12.15 mm was achieved after 9 days of cultivation; this value was about 2.3-fold higher than the thickness in basic medium. Scanning electron micrographs showed that BC from the optimal medium was more compact than plant cellulose and was reticulated structure consisting of ultrafine cellulose fibrils. BC from the optimal medium was found to be of cellulose type I, the same as typical native cellulose.

Process Optimization of PECVD SiO2 Thin Film Using SiH4/O2 Gas Mixture

  • Ha, Tae-Min;Son, Seung-Nam;Lee, Jun-Yong;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.434-435
    • /
    • 2012
  • Plasma enhanced chemical vapor deposition (PECVD) silicon dioxide thin films have many applications in semiconductor manufacturing such as inter-level dielectric and gate dielectric metal oxide semiconductor field effect transistors (MOSFETs). Fundamental chemical reaction for the formation of SiO2 includes SiH4 and O2, but mixture of SiH4 and N2O is preferable because of lower hydrogen concentration in the deposited film [1]. It is also known that binding energy of N-N is higher than that of N-O, so the particle generation by molecular reaction can be reduced by reducing reactive nitrogen during the deposition process. However, nitrous oxide (N2O) gives rise to nitric oxide (NO) on reaction with oxygen atoms, which in turn reacts with ozone. NO became a greenhouse gas which is naturally occurred regulating of stratospheric ozone. In fact, it takes global warming effect about 300 times higher than carbon dioxide (CO2). Industries regard that N2O is inevitable for their device fabrication; however, it is worthwhile to develop a marginable nitrous oxide free process for university lab classes considering educational and environmental purpose. In this paper, we developed environmental friendly and material cost efficient SiO2 deposition process by substituting N2O with O2 targeting university hands-on laboratory course. Experiment was performed by two level statistical design of experiment (DOE) with three process parameters including RF power, susceptor temperature, and oxygen gas flow. Responses of interests to optimize the process were deposition rate, film uniformity, surface roughness, and electrical dielectric property. We observed some power like particle formation on wafer in some experiment, and we postulate that the thermal and electrical energy to dissociate gas molecule was relatively lower than other runs. However, we were able to find a marginable process region with less than 3% uniformity requirement in our process optimization goal. Surface roughness measured by atomic force microscopy (AFM) presented some evidence of the agglomeration of silane related particles, and the result was still satisfactory for the purpose of this research. This newly developed SiO2 deposition process is currently under verification with repeated experimental run on 4 inches wafer, and it will be adopted to Semiconductor Material and Process course offered in the Department of Electronic Engineering at Myongji University from spring semester in 2012.

  • PDF