• Title/Summary/Keyword: Environmental Resistance Performance

Search Result 461, Processing Time 0.025 seconds

The Effect of Anchorage with Shear Reinforcement in Flat Plate System (플랫 플레이트 구조에서 전단보강체의 정착성능에 따른 전단보강효과)

  • Choi, Chang-Sik;Bae, Baek-Il;Choi, Yun-Cheul;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.667-675
    • /
    • 2012
  • Flat plate are being used more in buildings requiring a high level of technical installations or in buildings needing changeable room arrangements during their life time such as office buildings. The main problem in flat plate is its weak resistance against a punching failure at its slab-column connections. Therefore, in this research, an experimental study on full-scale interior slab-column connection was performed. Three types of shear reinforcements were tested to prevent brittle punching shear failure that could lead to collapse of the structure. A series of four flat plate specimens including a specimen without shear reinforcement and three specimens with shear reinforcements were tested. The slabs were tested up to failure using monotonic vertical shear loading. The presences of the shear reinforcements substantially increased punching shear capacity and ductility of the interior slabcolumn connections. The test results showed that a slab that did not have enough bond length failed before shear reinforcement yielded due to anchorage slip. Also, FEM analyses were performed to study an effect of slab thickness and concrete compressive strength on the flat plate slab. The analytical study results were used to propose a method to calculate performance capacity of shear reinforcement in slab-column connection.

Development of Multipoint Simultaneous Full-duplex Team Communication Module for SCBA (SCBA 면체용 다자간 동시 양방향 팀 통신모듈 개발)

  • Kim, Si-Kuk;Choi, Su-Gil;Lim, Woo-Sub;Han, Yong-Taek
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.165-172
    • /
    • 2019
  • This study presents the design and manufacture of a self-contained breathing apparatus SCBA wireless communication module with a multipoint simultaneous full-duplex communication system to enable communication between team members wearing the SCBA system. It is necessary for fire-fighters to wear the SCBA system during extinguishing and rescue work at the fire site. Evaluation of the team communication module confirmed the feasibility of communication over more than 500 m in the test condition based on the line of sight. By implementing the Ad-hoc function, it was confirmed that the communication distance could be extended to 128 m by automatic routing up to 3 hoc. The vertical distance inside the building for successful communication was up to the 5th floor in the open staircase and up to the 3rd floor in the partitioned staircase. Furthermore, the performance testing of the communication module assuming a fire situation, confirmed that five team members correctly recognized the standard abbreviation of fire and wireless communication without a separate PTT key operation. In addition, the flame resistance was verified by exposing the module to a flame at 950 ± 50 ℃ for 5 s and then immediately extinguishing the flame.

Convergence Study on the Development and Material Property of Wax for Surface Conservation of Iron Alloy Outdoor Sculpture (야외 철제 조각 작품 표면 보존용 왁스의 개발 및 재료 특성에 관한 융합 연구)

  • Oh, Seung-Jun;Wi, Koang-Chul
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.4
    • /
    • pp.151-160
    • /
    • 2018
  • Waxes currently used as a coating material to preserve surfaces of outdoor iron sculptures tend to face lower coating strength and efflorescence due to the aging from air pollution and acid rains. Consequently, they are subjected to repeated corrosions shortly after the treatment. And the sculptures face the problem losing their original nature because of the changes of colors and lusters, so this convergence study aims at developing wax with better performance than the existing materials. For this reason, the study identified the effects of physical property using the environmental experiments such as the tests of salt spray and gas corrosion as well as the analysis of luster level and thermo-gravimetry. As this study result, the developed ISC wax showed the excellent blocking effect from salt water and coating durability more than five times compared with the existing waxes, better acid resistance by two-four times, sun block effect by 2-10 times, improved luster variance by 3-16 times, improved thermo-stability and durability by 0.5-5 times, and therefore demonstrating far better coating effect than the existing waxes. In the light of these findings, this study contributes for this new development which can replace the existing waxes used so far in order to preserve the outdoor iron sculptures.

Classification of Fire Causes in Warehouses Using the TRIZ Technique and Analysis of Preventive Measures Accordingto 4M (TRIZ기법에 의한 물류창고의 화재원인 및 4M에 따른 예방대책 분석)

  • Han, Sang-Hun;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.401-412
    • /
    • 2020
  • This study analyzed the causes of warehouse fires using a creative problem-solving technique called TRIZ. It identified preventive measures by applying 4M. The results are as follows. First, this study examined the inconsistency among the causes of warehouse fires using TRIZ. Second, it analyzed human factors and fire prevention measures in warehouses such as safety standards for managers, and methods for the promotion of safety consciousness among workers, and for the reinforcement of construction technology for sandwich panel workers. Third, it identified the mechanical and facility factors and fire prevention measures in warehouses such as safety facilities, the expanded installation of safety devices, the adoption and development of fire suppression equipment, and the deployment of methods to improve the fire resistance of sandwich panels. Fourth, it presented working and environmental factors and fire prevention measures in warehouses such as the tightening of safety precautions and the supervision of working methods, and setting fire partitions both in loading places and based on performance-based design. Finally, it proposed managerial factors and fire prevention measures in warehouses such as specific targeting for firefighting with low fire hazards, reviewing the material quality regulations of non-combustible or higher for sandwich panels in the specific target of firefighting that cannot apply fire safety standards, installing sprinklers in cold storage, and mandating the installation of automated facilities with retroactive application regardless of the floor area in the warehouse with a sandwich panel structure.

Seismic Behavior and Estimation for Base Isolator Bearings with Self-centering and Reinforcing Systems (자동복원 및 보강 시스템과 결합된 면진받침의 지진거동과 평가)

  • Hu, Jong Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1025-1037
    • /
    • 2015
  • Flexible base isolation bearings that separate superstructure from ground have been widely used in the construction field because they make a significant contribution to increasing the fundamental period of the structure, thereby decreasing response acceleration transmitted into the superstructure. However, the established bearing devices installed to uphold the whole building give rise to some problems involved with failure and collapse due to lack of the capacity as modern structures are getting more massive and higher. Therefore, this study suggests new isolation bearings assembled with additional restrainers enabled to reinforcing and recentering, and then evaluates their performance to withstand the seismic load. The superelastic shape memory alloy (SMA) bars are installed into the conventional lead-rubber bearing (LRB) devices in order to provide recentering forces. These new systems are modeled as component spring models for the purpose of conducting nonlinear dynamic analyses with near fault ground motion data. The LRB devices with steel bars are also designed and analyzed to compare their responses with those of new systems. After numerical analyses, ultimate strength, maximum displacement, permanent deformation, and recentering ratio are compared to each model with an aim to investigate which base isolation models are superior. It can be shown that LRB models with superelastic SMA bars are superior to other models compared to each other in terms of seismic resistance and recentering effect.

Effect of electrocoagulation on sludge characteristics in EC-MBR (EC-MBR에서 전기응집이 슬러지 특성에 미치는 영향)

  • Um, Se-Eun;Chang, In-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.42-49
    • /
    • 2017
  • The application of electro-coagulation has been attempted to control the membrane fouling problem in a MBR (Membrane Bio-Reactor). This study examined the effects of the operating parameters (current density and contact time) of the electro-coagulation process on the change in the characteristics of activated sludge. The current density changed from 2.5 to 12, $24A/m^2$, and the contact time was varied from 0 to 2 and 6 hr, respectively. At a current density of $24A/m^2$ and 6 hr of operation, the MLSS changed from 6,800 to 7,000 mg/L (3% increase), but the MLVSS did not increase significantly. After 6 hr of operation, the soluble COD decreased from 71 to 37 mg/L under the $24A/m^2$ condition, from 113 to 67 mg/L under the $12A/m^2$ condition, and from 84 to 80 mg/L under the $2.5A/m^2$ condition. On the other hand, soluble-TN and -TP concentration showed slight changes. The soluble-EPS and Bound-EPS concentration decreased slightly with increasing current density. The membrane filtration performance of activated sludge before and after electro-coagulation was compared. The filtration resistances after electro-coagulation decreased from 6 to 61 %, particularly as the current density and contact time were increased. This indicates that electro-coagulation can be used to control membrane fouling in the MBR process.

Mechanical Performance Evaluation of RC Beams with FRP Hybrid Bars under Cyclic Loads (FRP 하이브리드 보강근을 가지는 RC보의 반복하중에 대한 역학적 성능 평가)

  • Hwang, Chul-Sung;Park, Jae-Sung;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.9-14
    • /
    • 2017
  • In the present work, a mechanical performances under cyclic loading in RC (Reinforced Concrete) beams with normal steel and FRPH (Fiber Reinforced Plastic Hybrid) bar are investigated. For the work, RC beam members with $200{\times}200{\times}2175mm$ of geometry and 24 Mpa of design strength are prepared, and 4-point-bending tests are performed for evaluation of cracking, yielding, and ultimate loads. Through static loading test, 48.9kN and 36.0 kN of yielding loads are measured for normal RC and FRPH beam, respectively. They have almost same ultimate load of 50.0 kN. Typical tension hardening behavior is observed in FRPH beam, which is caused by the behavior of FRPH bar with tension hardening. In cyclic loading conditions, FRPH beam has more smaller crack width and scattered crack pattern, and it shows more elastic recovery than normal RC beam. The energy dissipation ratio in FRPH beam is 0.83, which is greater than 0.62 in normal RC beam and it shows more effective resistance to cyclic loadings.

Design of a Full-Printed NFC Tag Using Silver Nano-Paste and Carbon Ink (은 나노 분말과 카본 잉크를 이용한 완전 인쇄형 NFC 태그 설계)

  • Lee, Sang-hwa;Park, Hyun-ho;Choi, Eun-ju;Yoon, Sun-hong;Hong, Ic-pyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.716-722
    • /
    • 2017
  • In this paper, a fully printed NFC tag operating at 13.56 MHz was designed and fabricated using silver nano-paste and carbon ink. The proposed NFC tag has a printed coil with an inductance of $2.74{\mu}H$ on a PI film for application to an NFC tag IC with an internal capacitance of 50 pF. Screen printing technology used in this paper has advantages such as large area printing for mass production, low cost and eco-friendly process compared to conventional PCB manufacturing process. The proposed structure consists of a circular coil implemented as a single layer using silver nano-paste and carbon ink, a jumper pattern for chip mounting between the outer edge and the center of the coil, and an insulation pattern between the coil and the jumper pattern. In order to verify the performance of the proposed NFC tag, we performed the measurements of the printing line width, thickness, line resistance, adhesion and environmental reliability, and confirmed the suitability of the NFC tag based on the full-printed manufacturing method.

A Study on the Green Ship Design for Ultra Large Container Ship (대형 컨테이너 운반선의 그린쉽 설계에 관한 연구)

  • Kim, Mingyu;Park, Dong-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.558-570
    • /
    • 2015
  • A study on the green ship design for Ultra Large Container Ship (ULCS, 18,000 TEU Class Container Ship) was performed based on the four step procedures of the initial design and hull form optimization to maximize economic and propulsive performance. The first, the design procedure for ULCS was surveyed with economic evaluation considering environmental rules and regulations. The second, the characteristics of single and twin skeg container ships were investigated in view of initial design and performances. The third, the hull form optimization for single and twin skeg ships with the same dimensions was conducted to improve the resistance and propulsive performances at design draught and speed by several variations and the results of the optimization were verified by numerical calculations of CFD and model test. The last, for the estimated operating profile of draught and speed, the hull forms of single and twin sked ships were optimized by CFD. From this study, the methodologies to optimize the hull form of ULCS were proposed with considerations during the green ship design and the improvement of the energy efficiency for the optimized hull forms was confirmed by the proposed formula of the total energy considering design conditions, operating profile and fuel oil consumption.

Efficacy of Antagonistic Bacteria for Biological Control of Rhizoctonia Blight (Large patch) on Zoysiagrass (잔디 갈색퍼짐병(Large patch)의 생물학적 방제를 위한 길항 미생물의 선발과 효력 검정)

  • Jung, Woo-Chul;Shin, Taek-Su;Kim, Bong-Su;Im, Jae-Seong;Lee, Jae-Ho;Kim, Jin-Won
    • Research in Plant Disease
    • /
    • v.14 no.1
    • /
    • pp.43-50
    • /
    • 2008
  • Rhizoctonia blight (large patch) caused by Rhizoctonia solani AG2-2 is one of the major diseases on zoysiagrass in golf courses. In this study, anatgonistic bacteria to R. solani AG2-2 were selected in vitro tests using confrontation bioassay and triple layer agar diffusion method. The most active bacteria, Bacillus subtilis CJ-9 were tested for controlling large patch in pots. Relative Performance Indies (RPI) was used as a criterion for the selection of potential biocontrol agent. B. subtilis CJ-9 showed resistance to major synthetic agrochemicals used in golf course. In field tests at golf course, B. subtilis CJ-9 was more effective in suppression of large patch severity and population development of R. solani AG2-2 in soil than chemical fungicides. B. subtilis CJ-9 could be an alternative to chemical fungicides for eco-friendly management of large patch on zoysiagrass.