• Title/Summary/Keyword: Environmental Conservation Area

Search Result 855, Processing Time 0.032 seconds

Vegetation Distribution Status and Change for Twenty Four Years(1986~2010) of Seunghwanglim(Forest), Wonju (원주시 성황림(城隍林) 식생분포 현황 및 24년간(1986~2010년) 변화분석)

  • Han, Bong-Ho;Choi, Jin-Woo;Noh, Tai-Hwan;Kim, Ji-Suk
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.5
    • /
    • pp.741-757
    • /
    • 2012
  • This study had targeted the Seunghwanglim of Wonju in order to understand the forest vegetation's present condition. And then we compared the change in vegetation of Seunghwanglim for 24years. It was intended to provide basic data for conservation and management. Actual vegetation as a result of investigation, a total area of $56,231m^2$ Quercus serrata forest(7.02%), Acer triflorum forest(5.71%), and Deciduous Broad-Leaved Forest and Pinus densiflora forest(6.4%) were distributed variously. Present condition of the plains forest has 34 kinds of canopy species, 65 kinds of understory species, 70 species of shrubs species, 88 species of total species. And the plains forest has 500 individuals of canopy layer, 1,102 individuals of understory layer. Mean importance percentage of the major species showed Ulmus davidiana var. japonica(15.6%), Acer triflorum(15.2%), Pinus densiflora(11.1%), Quercus serrata(9.8%). Acer triflorum diameter at Ulmus davidiana var. japonica were a relatively wide range. Results of change for 24 years, vegetation of Seunghwanglim was changed from Quercus serrata-Acer triflorum to Ulmus davidiana var. japonica-Acer triflorum. Big trees over than DBH 30cm were surveyed total 18 species, 166 individuals. Increased over than the past 63 individuals. Seunghwanglim was destroyed by reckless past. Since 1990, the outer perimeter fence was installed to control human access. After that, understory layer and shrub layer were developed. And big tree was increased. Which is considered to restore damaged ecosystems. In order to conservation and protection of Seunghwanglim, people have to management and monitor about exotic species such as Robinia pseudo-acacia, Populus tomentiglandulosa, Castanea crenata, Pueraria lobata, etc.

A Study on the Construction Methods and the Distribution of Proper Spatial Function for Restoring Urban Streams into Close-to-Nature Streams - A Case Study of Hongjecheon(Stream) in Seodaemun-Gu, Seoul - (도시 내 자연형 하천 조성을 위한 적정 공간기능 배분과 조성방안 연구 - 서울시 서대문구 홍제천을 사례로 -)

  • Jung, Tae-Jun;Lee, Kyong-Jae;Han, Bong-Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.3
    • /
    • pp.43-55
    • /
    • 2013
  • The purpose of this study is to propose a plan that properly organizes urban close-to-nature streams by evaluating the city park functions, ecological functions and landscape functions required for urban stream and setting up space function suitable for the space. The site of this study is Hongjecheon located in Seodaemun gu of Seoul City, whose length of channel spans 6.12km in total. The plan for the construction of close-to-nature streams had been established from late 2003, and the construction was completed. Evaluation Categories and indications were deduced from 4 stages. First, based on theoretical examination, we made a list of stream and park evaluation categories and added Category about Characteristic of urban streams. Next, we set Final Evaluation Categories and indications through the process of goal-relevance, indication verification, merging similar category. Final Evaluation Categories were deduced such as usage demand, usability(city park functions), biodiversity, inhabitation potential, rarity(ecological functions), historical cultural elements, and landscape Quality(landscape functions). As a result of allotting space functions, zones 1 through 4, got high grades at usage demand, was classified as a civic resort district; zones 5 through 6, close to major green area and remained original landscape, as ecological conservation and restoration district; zones 7 through 8, get high grades at usage demand and usability, as environmentally-friendly use district; and zones 9 through 10, many historical cultural elements and view points, and high green possession rate, as stream scenic district. In addition, detail space function and construction plan for each zones were proposed. As a result of this study, proposed space function assignment considering natural characteristics, humanities and social characteristics and landscape characteristics and is expected to be utilized at reasonable spatial planning considering various functions required for urban stream.

Assessment of Climate and Land Use Change Impacts on Watershed Hydrology for an Urbanizing Watershed (기후변화와 토지이용변화가 도시화 진행 유역수문에 미치는 영향 평가)

  • Ahn, So Ra;Jang, Cheol Hee;Lee, Jun Woo;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.567-577
    • /
    • 2015
  • Climate and land use changes have impact on availability water resource by hydrologic cycle change. The purpose of this study is to evaluate the hydrologic behavior by the future potential climate and land use changes in Anseongcheon watershed ($371.1km^2$) using SWAT model. For climate change scenario, the HadGEM-RA (the Hadley Centre Global Environment Model version 3-Regional Atmosphere model) RCP (Representative Concentration Pathway) 4.5 and 8.5 emission scenarios from Korea Meteorological Administration (KMA) were used. The mean temperature increased up to $4.2^{\circ}C$ and the precipitation showed maximum 21.2% increase for 2080s RCP 8.5 scenario comparing with the baseline (1990-2010). For the land use change scenario, the Conservation of Land Use its Effects at Small regional extent (CLUE-s) model was applied for 3 scenarios (logarithmic, linear, exponential) according to urban growth. The 2100 urban area of the watershed was predicted by 9.4%, 20.7%, and 35% respectively for each scenario. As the climate change impact, the evapotranspiration (ET) and streamflow (ST) showed maximum change of 20.6% in 2080s RCP 8.5 and 25.7% in 2080s RCP 4.5 respectively. As the land use change impact, the ET and ST showed maximum change of 3.7% in 2080s logarithmic and 2.9% in 2080s linear urban growth respectively. By the both climate and land use change impacts, the ET and ST changed 19.2% in 2040s RCP 8.5 and exponential scenarios and 36.1% in 2080s RCP 4.5 and linear scenarios respectively. The results of the research are expected to understand the changing water resources of watershed quantitatively by hydrological environment condition change in the future.

Home Range Analysis of a Pair of Gorals (Naemorhedus caudatus) Using GPS Collar According to the Elevation Change, in the North Gyeongbuk Province(Uljin) of Korea (경북북부지역(울진) 산양(Naemorhedus caudatus) 암·수 한 쌍의 행동권 및 고도변화에 따른 행동권 분석)

  • Cho, Chea-Un;Kim, Ki-Yoon;Kim, Kyu-Cheol;Kim, Hyun-Min;An, Jae-Yong;Lee, Bae-Keun;Park, Jong-Gil
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.135-146
    • /
    • 2015
  • This study was carried out to understand ecological characteristics of Korean goral such as home range, seasonal home range and habitat use and used for Korean goral restoration and conservation, through a pair of gorals in the north Gyeongbuk province of Korea. With data from GPS collars, we analyzed the behavioral characteristics of the endangered Korean gorals(n=2) in Uljin area from June 2013 to July 2014. As a result, their home range was $1.38{\pm}0.24km^2$ in MCP 95%, $0.81{\pm}0.09km^2$ in FK 95% and $0.15{\pm}0.16km^2$ in FK 50% (t=8.118, p>0.05). Seasonal home range for MCP 95% was $0.74{\pm}0.31km^2$ > (winter) > $0.71{\pm}0.27km^2$ (spring) > $0.61{\pm}0.06km^2$ (autumn) > $0.27{\pm}0.04km^2$ (summer) (F=2.135 p>0.05). It showed that home range in winter was the largest and that in summer was the smallest. Mean elevation of male for seasonal habitat use was $440.18{\pm}71.32m$ in summer and that of female was $727.25{\pm}99.98m$ in spring. The lowest altitude for male was $372.72{\pm}70.79$ and female was $664.60{\pm}139.71m$. It meant that there were seasonal change and thus annual and seasonal behavior characteristics for both sexes had different correlation according to elevation change. Although in this study the correlation with prey in habitat and the changes of habitat disturbance were not clearly investigated, We could understand goral home range and habitat use through research data.

A Study on the Biotope Structure of Wintering Place and Behavior Characteristics of Anser fabalis in Cheongna Area, Incheon Free Economic Zone, Korea (인천경제자유구역 청라지구에서의 큰기러기 월동지 비오톱구조와 행동특성 연구)

  • Park, Byeong-Ku;Han, Bong-Ho;Lee, Kyong-Jae;Kwak, Jeong-In;Im, Seong-Soo
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.3
    • /
    • pp.305-315
    • /
    • 2013
  • This study is aimed to provide the preliminary data for conservation and management of wintering site for Anser fabalis population in Cheongna Area, Incheon Free Economic Zone, Korea through analyzing the relationship between the biotop structure of its wintering site and behavior characteristics. The main types (size and ratio) of the biotope in Cheongna Area, Incheon Free Economic Zone are reed wetlands ($6,093,762m^2$, 47.8%), rice fields without rice straw ($2,927,916m^2$, 23.0%), and rice fields with rice straw ($1,915,655m^2$, 15.0%). According to the survey carried on 13th Feb., 2013, total 33 species and 6, 535 individual birds were observed and among of them, the dominant bird was Anser fabalis showing 5,128 indiviuals, 78% of total population. As the result of analyzing the migratory route of Anser fabalis, the bird moved from roosting site to foraging site before and after sunrise and from feeding site to roosting site before and after sunset. According to the analysis of interrelation between habitat characteristics and biotope types of the bird, population density was the highest in reed wetlands among habitat types and individual appearance was the highest in water-filled rice field melting ice. The bird ate the roots and bulb of hydrophytes in reed wetlands and showed various behaviors like eating dropped grains, resting and sleeping in water-filled rice fields and eating dropped grains and resting in rice fields with and without rice straw. It is shown that the number of Anser fabalis appearing in rice fields is depended on the presence of dropped grains than types of rice field.

A Study of the Historical Significance of Reclamation and How to Preserve and Utilize Reclamation of Cultural Heritage -Focusing on modern and contemporary reclamation sites in the Saemangeum area- (간척의 역사적 의미와 간척문화유산의 보존·활용 방안 연구 - 새만금 지역 근·현대 간척 시설을 중심으로 -)

  • Lee, Minseok
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.2
    • /
    • pp.110-139
    • /
    • 2020
  • Reclamation is the act of creating new lands by constructing dikes in offshore tidal flats to utilize them for various purposes, including the establishment of farmland to secure food for an increasing population. Based on the fact that reclamation has resulted in drastic changes in the environmental, economic, social, and cultural aspects of land expansion and development, population movement, and the formation of cities since ancient times, I reviewed the value of reclamation sites and addressed the issue of how to preserve and utilize them. "Reclamation culture" refers collectively to the recognition and concept system, behavior styles, and cultural products created by changes in the environment, and the tangible, intangible, and natural heritage generated directly and indirectly by reclamation is defined as "reclamation cultural heritage". It shows that the historical background of reclamation accords with prevailing trends, and that the reclamation sites possess cultural heritage value due to their historical, academic, and scarce characteristics. Numerous reclamation cultural heritage sites at the Gwangwhal and Gyehwa dikes are on the verge of being destroyed, with their original function having ended after the construction of Saemangeum Sea Wall. I propose measures to preserve these under the principle that utilization is based on the basic premise of conservation. First of all, modern and contemporary reclamation sites must necessarily be designated and managed as registered cultural properties, local cultural heritage, future heritage, and agricultural heritage. In particular, as it has been confirmed that reclamation sites created after the Goryeo and Joseon dynasties and the 1950s have not been designated as cultural heritage sites. It is necessary to review the characteristics and values of such reclamation sites through a full survey of national reclamation data. Effective and sustainable utilization of reclamation cultural heritage, which has not been acknowledged in the past due to its close relationship with our lives, is necessary to search for hidden stories found within that heritage, to organize governance for the efficient use of reclamation resources, and to build a museum to collect and display the history and culture of the reclaimed areas. Finally, through links with countries with experience in reclamation, we will be able to cope jointly with international issues such as those pertaining to society, culture, and environment, and would be able to implement various projects to further the advancement of human beings.

Analysis of Fish Ecology and Water Quality for Health Assessments of Geum - River Watershed (금강본류의 건강성 평가를 위한 어류생태 및 수질 특성분석)

  • Park, Yun-Jeong;Lee, Sang-Jae;An, Kwang Guk
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.2
    • /
    • pp.187-201
    • /
    • 2019
  • This study examined the physicochemical water quality and evaluated the ecological health in 14 sites of Geum River (upstream, mid-stream, and downstream) using the fish community distribution and guilds and eight multi-variable matrices of FAI (Fish Assessment Index) during June 2008-May 2009. The analysis of the water quality variables showed no significant variation in the upstream and mid-stream but a sharp variation due to the accumulation of organic matter from the point where the treated water of Gap and Miho streams flew. The analysis of physicochemical water properties showed that BOD, COD, TN, TP, Cond, and Chl-a tended to increase while DO decreased to cause eutrophication and algae development from the downstream where Miho and Gap stream merged. The analysis of fish community showed that the species richness index and species diversity index increased in the mid-stream area but decreased in the downstream area, indicating the stable ecosystem in the upper stream and the relatively unstable ecosystem in the downstream. The analysis of the species distribution showed that the dominant species were Zacco platypus that accounted for 20.9% of all fish species and Zacco koreanus that accounted for 13.1%. The analysis of the fish tolerance and feeding guild characteristics showed that the sensitive species, the insectivore species, and the aquatic species were dominant in the mid-stream point. On the other hand, contaminants from the sewage water treatment plant of Miho stream had a profound effect in the downstream to show the dominance of tolerant species, omnivorous species, and lentic species. Therefore, it is necessary to improve water quality by reducing the load of urban pollutants and to pay attention to the conservation and restoration of aquatic ecosystems.

Geosites, Geoheritages and Geotrails of the Hwaseong Geopark, the Candidate for Korean National Geopark (화성 국가지질공원 후보지의 지질명소, 지질유산 그리고 지오트레일)

  • Cho, Hyeongseong;Shin, Seungwon;Kang, Hee-Cheol;Lim, Hyoun Soo;Chae, Yong-Un;Park, Jeong-Woong;Kim, Jong-Sun;Kim, Hyeong Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.195-215
    • /
    • 2019
  • Geopark is a new system for development of the local economy through conservation, education, and tourism that is an area of scientific importance for the earth sciences and that has outstanding scenic values. The Hwaseong Geopark, the candidate for Korean National Geopark is composed of 10 geosites: Gojeongri dinosaur egg fossils, Ueumdo, Eoseom, Ddakseom, Goryeom, Jebudo, Baengmiri Coast, Gungpyeonhang, Ippado and Gukwado geosites. In this study, geosites, geoheritages, and geotrails of the Hwaseong Geopark were described in detail, and the value and significane as a geopark were also discussed. The geology of the Hwaseong Geopark area belonging to the Gyeonggi Massif consists of the Precambrian metamorphic and meta-sedimentary rocks, Paleozoic sedimentary and metamorphic rocks, Mesozoic igneous and sedimentary rocks, and Quaternary deposits, indicating high geodiversity. The Gojeongri Dinosaur Egg Fossils geosite, designated as a natural monument, has a geotrail including dinosaur egg nest fossils, burrows, tafoni, fault and drag fold, cross-bedding. Furthermore, a variety of infrastructures such as eco-trail deck, visitor center are well-established in the geosite. In the Ueumdo geosite, there are various metamorphic rocks (gneiss, schist, and phyllite) and geological structures (fold, fault, joint, dike, and vein), thus it has a high educational value. The Eoseom geosite has high academic value because of the orbicular texture found in metamorphic rocks. Also, various volcanic and sedimentary rocks belonging to the Cretaceous Tando Basin can be observed in the Ddakseom and Goryeom geosites. In the Jebudo, Baengmiri Coast, and Gungpyeonghang geosites, a variety of coastal landforms (tidal flat, seastacks, sand and gravel beach, and coastal dunes), metamorphic rocks and geological structures, such as clastic dikes and quartz veins can be observed, and they also provide various programs including mudflat experience to visitors. Ippado and Gukwado geosites have typical large-scale fold structures, and unique coastal erosional features and various Paleozoic schists can be observed. The Hwaseong Geopark consists of outstanding geosites with high geodiversity and academic values, and it also has geotrails that combine geology, geomorphology, landscape and ecology with infrastructures and various education and experience programs. Therefore, the Hwaseong Geopark is expected to serve as a great National Geopark representing the western Gyeonggi Province, Korea.

Habitat Quality Analysis and an Evaluation of Gajisan Provincial Park Ecosystem Service Using InVEST Model (InVEST 모델을 이용한 가지산도립공원의 서식지질 분석과 생태계서비스평가)

  • Kwon, Hye-Yeon;Jang, Jung-Eun;Shin, Hae-Seon;Yu, Byeong-Hyeok;Lee, Sang-Cheol;Choi, Song-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.3
    • /
    • pp.318-326
    • /
    • 2022
  • The Convention on Biodiversity (CBD) recommends that 17% of the land be designated as a protected area to counter global environmental problems. Korea also realized a need to designate protected areas according to the international level and explain the significance of designating protected areas. Accordingly, studies on ecosystem services are required. In Korea, the protected areas are designated as national parks, provincial parks, and county parks by hierarchy under the Natural Parks Act. However, as priority was on political and administrative aspects, research on ecosystem service value evaluation and habitat management were concentrated in national parks, and provincial and county parks were relatively neglected. Therefore, more studies on provincial and county parks are necessary. In this study, habitat quality for Gajisan Provincial Park, where there were few studies on habitat management and ecosystem service valuation, was evaluated using the InVEST Habitat Quality model among the InVEST models. The analysis results were compared with 16 mountainous national parks. The results showed that the habitat quality value of Gajisan Provincial Park was 0.83, higher than that of the surrounding areas. The analysis of habitat quality in three districts showed 0,84 for the Tongdosa and Naewonsa districts and 0.83 for the Seoknamsa district. By use district, the nature conservation district, the natural environment district, the cultural heritage district, and the park village district had the highest habitat quality value in that order. Compared with the existing habitat quality analysis results of national parks, Gajisan Provincial Park showed naturalness at the level of Mudeungsan National Park. These results can be used as objective data for establishing policies and management plans to preserve biodiversity and promote ecosystem services in provincial parks.

Estimation of SCS Runoff Curve Number and Hydrograph by Using Highly Detailed Soil Map(1:5,000) in a Small Watershed, Sosu-myeon, Goesan-gun (SCS-CN 산정을 위한 수치세부정밀토양도 활용과 괴산군 소수면 소유역의 물 유출량 평가)

  • Hong, Suk-Young;Jung, Kang-Ho;Choi, Chol-Uong;Jang, Min-Won;Kim, Yi-Hyun;Sonn, Yeon-Kyu;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.363-373
    • /
    • 2010
  • "Curve number" (CN) indicates the runoff potential of an area. The US Soil Conservation Service (SCS)'s CN method is a simple, widely used, and efficient method for estimating the runoff from a rainfall event in a particular area, especially in ungauged basins. The use of soil maps requested from end-users was dominant up to about 80% of total use for estimating CN based rainfall-runoff. This study introduce the use of soil maps with respect to hydrologic and watershed management focused on hydrologic soil group and a case study resulted in assessing effective rainfall and runoff hydrograph based on SCS-CN method in a small watershed. The ratio of distribution areas for hydrologic soil group based on detailed soil map (1:25,000) of Korea were 42.2% (A), 29.4% (B), 18.5% (C), and 9.9% (D) for HSG 1995, and 35.1% (A), 15.7% (B), 5.5% (C), and 43.7% (D) for HSG 2006, respectively. The ratio of D group in HSG 2006 accounted for 43.7% of the total and 34.1% reclassified from A, B, and C groups of HSG 1995. Similarity between HSG 1995 and 2006 was about 55%. Our study area was located in Sosu-myeon, Goesan-gun including an approx. 44 $km^2$-catchment, Chungchungbuk-do. We used a digital elevation model (DEM) to delineate the catchments. The soils were classified into 4 hydrologic soil groups on the basis of measured infiltration rate and a model of the representative soils of the study area reported by Jung et al. 2006. Digital soil maps (1:5,000) were used for classifying hydrologic soil groups on the basis of soil series unit. Using high resolution satellite images, we delineated the boundary of each field or other parcel on computer screen, then surveyed the land use and cover in each. We calculated CN for each and used those data and a land use and cover map and a hydrologic soil map to estimate runoff. CN values, which are ranged from 0 (no runoff) to 100 (all precipitation runs off), of the catchment were 73 by HSG 1995 and 79 by HSG 2006, respectively. Each runoff response, peak runoff and time-to-peak, was examined using the SCS triangular synthetic unit hydrograph, and the results of HSG 2006 showed better agreement with the field observed data than those with use of HSG 1995.