• Title/Summary/Keyword: Environment-friendly ship

Search Result 69, Processing Time 0.023 seconds

A Study on Capacity of Electric Propulsion System by Load Analysis of 6,800TEU Container Ship (6,800TEU 컨테이너선의 부하분석을 통한 전기추진시스템 용량 연구)

  • Jang, Jae-Hee;Son, Na-Young;Oh, Jin-Seok
    • Journal of Navigation and Port Research
    • /
    • v.42 no.6
    • /
    • pp.437-445
    • /
    • 2018
  • IMO (International Maritime Organization) has been strengthening the regulations of ship emission gas such as sulfur oxides (SOX), nitrogen oxides (NOX) and carbon dioxides (CO2) to protect the marine environment. Especially, ECA (Emission Control Area) has been set and operated in the USA and US. As a countermeasure against these environmental regulations, the demand for environmentally, friendly and highly efficient vessels has led to a growing interest in technology related research with respect to electric propulsion systems capable of reducing exhaust gas. Container ships were excluded from the application coverage of the electric propulsion systems for reasons of operation at economical speed. However, in the future, the need for electric propulsion system is expected to rise, because it is easy to monitor and control so that it can be an applicate to smart ship which are represented by fourth industrial revolution technology. In this study, research was carried out to design a generator and battery capacity through the load analysis of the 6,800TEU container ship to apply the electric propulsion system of the container ship. A capacity design based on the load analysis has an advantage that the generator can be operated in a high efficiency section through the load distribution control using the battery.

A Study on the Development Trends of Polymer Electrolyte Membrane Fuel Cells and Application to Ships (국내외 PEMFC 개발 동향 및 선박 적용에 관한 고찰)

  • Lee, Chang-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.657-666
    • /
    • 2022
  • The International Maritime Organization(IMO) recommends the active implementation of national policies on technological development and energy efficiency to reduce Green House Gas (GHG) in the international shipping sector. Such IMO environmental regulation policies have a great impact on the entire shipping sector and are also a heavy burden on ship's owners. The most reasonable way to curb GHG emissions from ships comes down to the development of zero-emission ships. In other words, the development of a fuel cell ship (FCS) driven by an eco-friendly fuel is an alternative that can escape the IMO regulations. Countries in Asia, Northern America, and Europe independently develop and produce PEMFC, and are pursuing international standardization by acquiring approval in principle from an internationally accredited registration authority. Currently, there are three types of fuel cells (FC) that are recommended for ships: a Polymer Electrolyte Membrane Fuel Cell (PEMFC), a Molten Carbonate Fuel Cell (MCFC), and a Solid Oxide Fuel Cell (SOFC). In this study, PEMFC, which is expected to grow continuously in the global FC market, was analyzed domestic and international development trends, specifications, performance, and empirical cases applied to ships. In addition, when applying PEMFC to ships, it was intended to suggest matters to be considered and the development direction.

Numerical Analysis Study on the Turbulent Flow Characteristics around the Rotor Sail for Vessels (선박용 로터세일 주위의 난류 유동특성에 관한 수치해석적 연구)

  • Kim, Jung-eun;Cho, Dae-Hwan;Lee, Chang-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.648-656
    • /
    • 2022
  • As environmental regulations such as the International Maritime Organization (IMO)'s strategy to reduce greenhouse gases(GHG) are strengthened, technology development such as eco-friendly ships and alternative fuels is expanding. As part of this, ship propulsion technology using energy reduction and wind propulsion technology is emerging, especially in shipping companies and shipbuilders. By securing wind propulsion technology and introducing empirical research into shipbuilding and shipping, a high value-added market using eco-friendly technology can be created. Moreover, by reducing the fuel consumption rate of operating ships, GHG can be reduced by 6-8%. Rotor Sail (RS) technology is to generate a hydrodynamic lift in the vertical direction of the cylinder when the circular cylinder rotates at a constant speed and passes through the fluid. This is called the Magnus effect, and this study attempted to propose a plan to increase propulsion efficiency through a numerical analysis study on turbulence flow characteristics around RS, a wind power assistance propulsion system installed on a ship. Therefore, CL and CD values according to SR and AR changes were derived as parameters that affect the aerodynamic force of the RS, and the flow characteristics around the rotor sail were compared according to EP application.

Environment-friendly Processing Technologies of Mine Tailings: Research on the Characteristics of Mine Tailings when Developing of Deep Sea Mineral Resources (선광잔류물의 친환경적 처리 기술: 심해저광물자원개발시 발생하는 선광잔류물 특성 연구)

  • Moon, Inkyeong;Yoo, Chanmin;Kim, Jonguk
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.781-792
    • /
    • 2020
  • Mine tailings, which are inevitably formed by the development of manganese nodules, manganese crusts, and hydrothermal seafloor deposits, have attracted attention because of their quantity and potential toxicity. However, there is a lack of data on the quantity of mine tailings being generated, their physicochemical properties, and their effects as environmental hazards and on marine ecosystems in general. The importance of treating mine tailings in an environmentally friendly manner has been recognized recently and related reduction/treatment methods are being considered. In the case of deep-sea mineral resource development, if mine tailings cannot be treated aboard a ship, the issue becomes one of the cost of transporting them to land and solving the problem of environmental pollution there. Therefore, the Korea Institute of Ocean Science and Technology conducted research on the harmfulness of mine tailings, their effect on marine ecosystem, the diffusion model of contaminated particles, and candidate purification treatment technologies based on five representative controlling factors: 1) effects of pollution /on the environment, 2) effects of environmental/ biological hazards, 3) diffusion of particles, 4) mineral dressings, and 5) reducing/processing mine tailings. The results of this study can provide a basis for minimizing environmental problems by providing scientific evidences of the environmental effects of mine tailings. In addition, it is also expected that these results could be applied to the treatment of pollutants of different origins and at land-based mining waste sites.

Active Front End Rectifier Control of DC Distribution System Using Neural Network (신경회로망을 적용한 직류배전시스템의 AFE 정류기 제어에 관한 연구)

  • Kim, Seongwan;Jeon, Hyeonmin;Kim, Jongsu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1124-1128
    • /
    • 2021
  • As regulations of emissions from ships become more stringent, electric propulsion systems have been increasingly used to solve this problem in vessels ranging from large merchant ships to small and medium-sized ships. Methods for improving the efficiency of the electric propulsion system include the improvement of power sources; the use of a system linked to environmentally friendly power sources, such as batteries, fuel cells, and solar power; and the development of hardware and control methodology for rectifiers, power conversion devices, and propulsion motors. The method using a phase-shifting transformer with diodes has been widely used for rectification. Power semiconductor devices with grid connection to an environmentally friendly power source using DC distribution, a variable speed power source, and the application of small and medium-sized electric propulsion systems have been developed. Accordingly, the demand for active front-end (AFE) rectifiers is increasing. In this study, a method using a neural network rather than a conventional proportional-integral controller was proposed to control the AFE rectifier. Tested controller data were used to design a neural network controller trained through MATLAB/Simulink. The neural network controller was applied to a rectification system designed using PSIM software. The results indicated the effectiveness of improving the waveform and power factor DC output stage according to the load variation. The proposed system can be applied as a rectification system for small and medium-sized environmentally friendly ships.

A Study on the Certification Criteria fot Personal Watercraft Using Electric Power Propulsion (전기 동력 추진식 수상오토바이 인증기준 개발 연구)

  • Kang, Dae-Kon;Kim, Shin-Hyo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.1
    • /
    • pp.67-72
    • /
    • 2017
  • This study developed an electric power propulsion personal watercraft by combining a battery and an electric system from the domestic automobile industry with water motorcycle from marine leisure industry in a convergence of technology. It also developed a safety inspection plan and type approval standard for personal watercraft that use electric power propulsion. For the registration and production of the electric power PWC (Personal Watercraft), a safety inspection standard (draft) and type approval standard (draft) have been established. PWC that use this electric power propulsion certification standard have been divided into two categories according to the use of gasoline engines as related to the ship's electrical system. The contents of these safety inspections standards is divided into 7 categories, and their purpose is to confirm the facilities used for the safe operation of PWC. Type approval is divided into 7 categories and is intended to ensure the safe production of PWC. This is basic data can be used to establish criteria for safety inspection and type approval of electric power propulsion vessels and to guide the production of the environmentally friendly PWC in Korea.

Modified Empirical Formula of Dynamic Amplification Factor for Wind Turbine Installation Vessel (해상풍력발전기 설치선박의 수정 동적증폭계수 추정식)

  • Ma, Kuk-Yeol;Park, Joo-Shin;Lee, Dong-Hun;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.846-855
    • /
    • 2021
  • Eco-friendly and renewable energy sources are actively being researched in recent times, and of shore wind power generation requires advanced design technologies in terms of increasing the capacities of wind turbines and enlarging wind turbine installation vessels (WTIVs). The WTIV ensures that the hull is situated at a height that is not affected by waves. The most important part of the WTIV is the leg structure, which must respond dynamically according to the wave, current, and wind loads. In particular, the wave load is composed of irregular waves, and it is important to know the exact dynamic response. The dynamic response analysis uses a single degree of freedom (SDOF) method, which is a simplified approach, but it is limited owing to the consideration of random waves. Therefore, in industrial practice, the time-domain analysis of random waves is based on the multi degree of freedom (MDOF) method. Although the MDOF method provides high-precision results, its data convergence is sensitive and difficult to apply owing to design complexity. Therefore, a dynamic amplification factor (DAF) estimation formula is developed in this study to express the dynamic response characteristics of random waves through time-domain analysis based on different variables. It is confirmed that the calculation time can be shortened and accuracy enhanced compared to existing MDOF methods. The developed formula will be used in the initial design of WTIVs and similar structures.

Estimation of Structural Strength for Spudcan in the Wind Turbine Installation Vessel (해상풍력발전기 설치선박의 스퍼드캔 구조강도 예측법)

  • Park, Joo-Shin;Lee, Dong-Hun;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.141-152
    • /
    • 2022
  • As interest increases related to the development of eco-friendly energy, the offshore wind turbine market is growing at an increasing rate every year. In line with this, the demand for an installation vessel with large scaled capacity is also increasing rapidly. The wind turbine installation vessel (WTIV) is a fixed penetration of the spudcan in the sea-bed to install the wind turbine. At this time, a review of the spudcan is an important issue regarding structural safety in the entire structure system. In the study, we analyzed the current procedure suggested by classification of societies and new procedures reflect the new loading scenarios based on reasonable operating conditions; which is also verified through FE-analysis. The current procedure shows that the maximum stress is less than the allowable criteria because it does not consider the effect of the sea-bed slope, the leg bending moment, and the spudcan shape. However, results of some load conditions as defined by the new procedure confirm that it is necessary to reinforce the structure to required levels under actual pre-load conditions. Therefore, the new procedure considers additional actual operating conditions and the possible problems were verified through detailed FE-analysis.

A Study on the Quality Analysis of Biodiesel for Ship's Fuel Utilization (바이오디젤의 선박 연료 활용을 위한 품질 분석)

  • Ha-seek Jang;Won-ju Lee;Min-ho Lee;Yong-gyu Na;Chul-ho Baek;Beom-seok Noh;Jun-soo Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.348-355
    • /
    • 2023
  • Biodiesel is known as an environmentally friendly neutral fuel, and a policy of obligatory mixing of a certain ratio is implemented on land. In this study, to verify the feasibility of using biodiesel as a ship fuel, component analysis, metal corrosion test, and storage stability test were performed on the mixing ratios of 0 %, 5 %, 10 %, and 20 % of marine diesel and biodiesel. Component analysis evaluated a total of eight factors including density, kinematic viscosity and flash point according to ISO 8217:2017 standards and the reliability of biodiesel through metal corrosion tests and storage stability tests under atmosphere temperature and harsh conditions (60 ℃) for 180 days. Results demonstrate that component analysis satisfied the ISO 8217:2017 standard in all biodiesel mixing ratios. Furthermore, as the biodiesel mixing ratio increased, the kinematic viscosity, density, and acid value increased and the sulfur content decreased. Metal corrosion rarely occurred in the case of carbon steel, iron, aluminum, and nickel, whereas in the case of copper, corrosion occurred under the influence of oxygen-rich biodiesel under the harsh conditions (60 ℃) of 20 % biodiesel mixture. As for storage stability, discoloration, sludge formation, and fuel separation were not visually confirmed.

An Expremental Study on Connections Friction Test of Improvement for Coastal Environment Block (Coastal Environments 블록의 개발을 위한 연결부 마찰 실험)

  • Kim, Chun-Ho;Kim, Sang-Hoonq
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.49-52
    • /
    • 2008
  • The plain and simple shape water front structure were designed and installed for wave protection and wave resistance. But the installation of these plain and simple structure cause deficiency of environmental affinity. Also the resonance phenomena from the reflective wave and shipwave of the harbor incident wave caused high tide and wave, consequently maintaining the tranquility of inside harbor, give difficulty for mooring the ship and loading-unloading, increase the possibility of ship collision at the quray wall and landing place To solve these problems, we develop the environmentally friendly wave dissipation block. And installation efficiency, stability of the blocks through experiment of C.E Block Joint.

  • PDF