DOI QR코드

DOI QR Code

A Study on Capacity of Electric Propulsion System by Load Analysis of 6,800TEU Container Ship

6,800TEU 컨테이너선의 부하분석을 통한 전기추진시스템 용량 연구

  • Jang, Jae-Hee (Division of Marine Engineering, Korea Maritime and Ocean University) ;
  • Son, Na-Young (Department of Naval Infra, Hanwha Systems) ;
  • Oh, Jin-Seok (Division of Marine Engineering, Korean Maritime and Ocean University)
  • Received : 2018.11.29
  • Accepted : 2018.12.31
  • Published : 2018.12.31

Abstract

IMO (International Maritime Organization) has been strengthening the regulations of ship emission gas such as sulfur oxides (SOX), nitrogen oxides (NOX) and carbon dioxides (CO2) to protect the marine environment. Especially, ECA (Emission Control Area) has been set and operated in the USA and US. As a countermeasure against these environmental regulations, the demand for environmentally, friendly and highly efficient vessels has led to a growing interest in technology related research with respect to electric propulsion systems capable of reducing exhaust gas. Container ships were excluded from the application coverage of the electric propulsion systems for reasons of operation at economical speed. However, in the future, the need for electric propulsion system is expected to rise, because it is easy to monitor and control so that it can be an applicate to smart ship which are represented by fourth industrial revolution technology. In this study, research was carried out to design a generator and battery capacity through the load analysis of the 6,800TEU container ship to apply the electric propulsion system of the container ship. A capacity design based on the load analysis has an advantage that the generator can be operated in a high efficiency section through the load distribution control using the battery.

국제해사기구(IMO)에서는 해양 환경보호를 위해 황산화물($SO_X$), 질소산화물($NO_X$), 이산화탄소($CO_2$) 등의 선박 배기가스 배출 규제를 강화하고 있으며, 특히 미국, 유럽을 중심으로 배출가스통제구역(Emission Control Area, ECA)을 설정하여 운용하고 있다. 이러한 환경 규제의 대응방법으로서 친환경 고효율 선박에 대한 요구가 커지면서 배출가스를 줄일 수 있는 전기추진시스템 관련 연구 및 기술에 대한 관심이 늘어나고 있다. 컨테이너선과 같은 상선은 경제속도 운항의 이유로 전기추진시스템의 적용대상에서 벗어나 있었으나, 앞으로 배기가스 배출 규제가 강화되고 4차 산업혁명 기술로 대표되는 빅데이터, IoT 기술을 적용한 자동화 시스템이 선박에 적용되기 위해서는 모니터링 및 제어가 쉬운 전기추진시스템이 필요할 것으로 전망된다. 따라서 본 논문에서는 6,800TEU 컨테이너 선박을 대상으로 전기추진시스템을 적용하기 위해서 기존 컨테이너 선박의 부하분석을 통해 부하분석 기반의 발전기 및 배터리 용량 설계를 목표로 연구를 진행하였다. 부하분석기반으로 설계된 시스템은 배터리를 이용한 부하분배제어를 통해 발전기가 높은 효율구간에서 운용할 수 있다는 장점이 있다.

Keywords

GHMHD9_2018_v42n6_437_f0001.png 이미지

Fig. 1 Energy conversion efficiency of electric propulsion system

GHMHD9_2018_v42n6_437_f0002.png 이미지

Fig. 2 Functional diagram of EMS

GHMHD9_2018_v42n6_437_f0003.png 이미지

Fig. 3 Use ratio according to auxiliary load size

GHMHD9_2018_v42n6_437_f0004.png 이미지

Fig. 4 Use ratio according to propulsion load size

GHMHD9_2018_v42n6_437_f0005.png 이미지

Fig. 5 Use ratio according to total load size

GHMHD9_2018_v42n6_437_f0006.png 이미지

Fig. 6 Distribution of speed of target ship

GHMHD9_2018_v42n6_437_f0007.png 이미지

Fig. 7 Example of load analysis table

GHMHD9_2018_v42n6_437_f0008.png 이미지

Fig. 8 Distribution of the auxiliary load classified by operating modes

GHMHD9_2018_v42n6_437_f0009.png 이미지

Fig. 9 Distribution of the propulsion load classified by operating modes

GHMHD9_2018_v42n6_437_f0010.png 이미지

Fig. 10 Distribution of the total load classified by operating modes

GHMHD9_2018_v42n6_437_f0011.png 이미지

Fig. 11 Distribution of the total load at the All state

GHMHD9_2018_v42n6_437_f0012.png 이미지

Fig. 12 Result of simulation of charge and discharge tendency

GHMHD9_2018_v42n6_437_f0013.png 이미지

Fig. 13 Distribution of battery capacity by generator combination(1)

GHMHD9_2018_v42n6_437_f0014.png 이미지

Fig. 14 Distribution of battery capacity by generator combination(2)

Table 1 Specification of target vessel

GHMHD9_2018_v42n6_437_t0001.png 이미지

Table 2 List of collected data

GHMHD9_2018_v42n6_437_t0002.png 이미지

Table 3 Generator capacity selection step

GHMHD9_2018_v42n6_437_t0003.png 이미지

Table 4 Combination of generation

GHMHD9_2018_v42n6_437_t0004.png 이미지

Table 5 Selecting generator capacity combination

GHMHD9_2018_v42n6_437_t0005.png 이미지

Table 6 Optimized operation load of generator by Case 4

GHMHD9_2018_v42n6_437_t0006.png 이미지

Table 7 Distribution of battery capacity by generator combination(3)

GHMHD9_2018_v42n6_437_t0007.png 이미지

Table 8 Generator and battery capacity of virtual electric propulsion ship

GHMHD9_2018_v42n6_437_t0008.png 이미지

References

  1. Egill. E.(2015), "Calculation of Service and Sea Margines", Norwegian University of Science and Technology, Department of Marine Technology, Master thesis.
  2. Hyang, C. H.(2018), "Autonomous vessels, The new growth engine of the downturned shipping and shipbuilding industry", Korea Maritime Institute Weekly report(2018.2.), Vol. 72. https://www.kmi.re.kr/web/trebook/view.do?rbsIdx=273&page=7&idx=87
  3. Hankyoreh(2017), China, the world's first electric freighter http://www.hani.co.kr/arti/economy/economy-general/823444.html
  4. Kouzelis, K.(2015). "Load and Flexibility Models for Distribution Grid Management", Aalborg University, Department of Energy Technology, PhD Dissertation.
  5. MAN(2012), "Diesel-electric Propulsion Plants, A brief guideline how to engineer a diesel-electric propulsion system", https://marine.mandieselturbo.com/docs/librariesprovider6/marine-broschures/diesel-electric-drives-guideline.pdf
  6. Park, Y. S.(2018), "Impact of shipbuilding industry on tightening marine environmental regulations" Weekly KDB report(2018.1.8.), KDB bank, pp. 18-20.