• Title/Summary/Keyword: Environment-Friendly Technology

Search Result 915, Processing Time 0.029 seconds

Study on the Air Insulation Design Guideline for ±500 kV Double Bipole Transmission Line with Metallic Return Conductor (도체귀로형 ±500 kV Double Bipole 송전선로 공기절연에 관한 연구)

  • Shin, Kooyong;Kwon, Gumin;Song, Seongwhan;Woo, Jungwook
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.141-147
    • /
    • 2019
  • Recently, the biggest issue in the electricity industry is the increase in renewable energy, and various technologies are being developed to ensure the capacity of the power system. In addition, super-grids linking power systems are being pushed to utilize eco-friendly energy between countries and regions worldwide. The HVDC transmission technology is required to link the power network between regions with different characteristics of the power system such as frequency and voltage. Until now, Korea has applied HVDC transmission technology that connects mainland and Jeju Island with submarine cables. But, the HVDC transmission technology is still developing for long-distance high-capacity power transmission from power parks on the east coast to load-tight areas near the metropolitan area. Considering the high population density and mountainous domestic environment, it is pushing for commercialization of the design technology of the ${\pm}500kV$ Double Bipole with metallic return wire transmission line to transmit large-scale power of 8 GW using minimal right of ways. In this paper, the insulation characteristics were studied for the design of double-bipole transmission tower with metallic return wire, which is the first time in the world. And the air insulation characteristics resistant to the various overvoltage phenomena occurring on transmission lines were verified through a full-scale impulse voltage test.

Application of Layer-by-Layer Assembly in Triboelectric Energy Harvesting (마찰대전 기반의 에너지 하베스팅에서 다층박막적층법의 응용)

  • Habtamu Gebeyehu, Menge;Yong Tae, Park
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.371-377
    • /
    • 2022
  • Triboelectric nanogenerator (TENG) devices have generated a lot of interest in recent decades. TENG technology, which is one of the technologies for harvesting mechanical energy among the energy wasted in the environment, is obtained by the dual effect of electrostatic induction and triboelectric charging. Recently, a multilayer thin film stacking method (or layer-by-layer (LbL) self-assembly technique) is being considered as a method to improve the performance of TENG and apply it to new fields. This LbL assembly technology can not only improve the performance of TENG and successfully overcome the thickness problem in applications, but also present an inexpensive, environmentally friendly process and be used for large-scale and mass production. In this review, recent studies in the accomplishment of LbL-based materials for TENG devices are reviewed, and the potential for energy harvesting devices reviewed so far is checked. The advantages of the TENG device fabricated by applying the LbL technology are discussed, and finally, the direction and perspective of this fabrication technology for the implementation of various ultra-thin TENGs are briefly presented.

Application of major plant nutrient releasing model and N2O emissions to the leachate from the mixtures of rice hull biochar and organic fertilizer materials (왕겨 바이오차와 유기농자재 혼합에 따른 주요 양분 용출 모델 적용 및 N2O 배출량 산정)

  • DongKeon Lee;JaeLee Choi;ChangKi Shim;JooHee Nam;SeokIn Youn;JeongSeok Song;Dogyun Park;JoungDu Shin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.43-53
    • /
    • 2023
  • This batch experiment evaluated the impacts of major plant nutrient releases by applying the modified Hyperbola model on the leachates and N2O emissions from incorporated rice hull biochar with organic fertilizer materials. The treatments consisted of the control as incorporated with organic fertilizer materials, the incorporated rice hull biochar with organic fertilizer materials, and the incorporated plasma-activated rice hull biochar with organic fertilizer materials under redox conditions. The results indicated that the maximum release amount of NH4-N was 3486.3 mg L-1 in the control, and their reduction rates of NH4-N, NO3-N, PO4-P, and K were 8.0%, 17.5% 44.3.0% and 8.7%, respectively, relative to the control. In the control, the highest soluble amount of PO4-P was 681.0 mg L-1. The estimations for accumulated NH4-N, NO3-N, PO4-P, and K-releases in all the treatments were significantly (p<0.01) fitted with a modified Hyperbola model. For greenhouse gas emissions, the lowest cumulative N2O was 340.4 mg kg-1 in the soil incorporated with plasma-activated rice hull biochar, and the reduction rates were 27.8% and 86.4% in the rice hull biochar and plasma-activated rice hull biochar treatments, respectively, compared to the control. Therefore, it concluded that the incorporated rice hull biochar can be especially useful for controlling PO4-P release and N2O emissions for bio-fertilizer applications.

Eco-friendly and efficient in situ restoration of the constructed sea stream by bioaugmentation of a microbial consortium (복합미생물 생물증강법을 이용한 인공해수하천의 친환경 효율적 현장 수질정화)

  • Yoo, Jangyeon;Kim, In-Soo;Kim, Soo-Hyeon;Ekpeghere, Kalu I.;Chang, Jae-Soo;Park, Young-In;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.53 no.2
    • /
    • pp.83-96
    • /
    • 2017
  • A constructed sea stream in Yeongdo, Busan, Republic of Korea is mostly static due to the lifted stream bed and tidal characters, and receives domestic wastewater nearby, causing a consistent odor production and water quality degradation. Bioaugmentation of a microbial consortium was proposed as an effective and economical restoration technology to restore the polluted stream. The microbial consortium activated on site was augmented on a periodic basis (7~10 days) into the most polluted site (Site 2) which was chosen considering the pollution level and tidal movement. Physicochemical parameters of water qualities were monitored including pH, temperature, DO, ORP, SS, COD, T-N, and T-P. COD and microbial community analyses of the sediments were also performed. A significant reduction in SS, COD, T-N, and COD (sediment) at Site 2 occurred showing their removal rates 51%, 58% and 27% and 35%, respectively, in 13 months while T-P increased by 47%. In most of the test sites, population densities of sulfate reducing bacterial (SRB) groups (Desulfobacteraceae_uc_s, Desulfobacterales_uc_s, Desulfuromonadaceae_uc_s, Desulfuromonas_g1_uc, and Desulfobacter postgatei) and Anaerolinaeles was observed to generally decrease after the bioaugmentation while those of Gamma-proteobacteria (NOR5-6B_s and NOR5-6A_s), Bacteroidales_uc_s, and Flavobacteriales_uc_s appeared to generally increase. Aerobic microbial communities (Flavobacteriaceae_uc_s) were dominant in St. 4 that showed the highest level of DO and least level of COD. These microbial communities could be used as an indicator organism to monitor the restoration process. The alpha diversity indices (OTUs, Chao1, and Shannon) of microbial communities generally decreased after the augmentation. Fast uniFrac analysis of all the samples of different sites and dates showed that there was a similarity in the microbial community structures regardless of samples as the augmentation advanced in comparison with before- and early bioaugmentation event, indicating occurrence of changing of the indigenous microbial community structures. It was concluded that the bioaugmentation could improve the polluted water quality and simultaneously change the microbial community structures via their niche changes. This in situ remediation technology will contribute to an eco-friendly and economically cleaning up of polluted streams of brine water and freshwater.

Analysis of Perceptions of Student Start-up Policies in Science and Technology Colleges: Focusing on the KAIST case (과기특성화대학 학생창업정책에 대한 인식분석: KAIST 사례를 중심으로)

  • Tae-Uk Ahn;Chun-Ryol Ryu;Minjung Baek
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.2
    • /
    • pp.197-214
    • /
    • 2024
  • This study aimed to investigate students' perceptions at science and technology specialized universities towards entrepreneurship support policies and to derive policy improvement measures by applying a bottom-up approach to reflect the requirements of the policy beneficiaries, i.e., the students. Specifically, the research explored effective execution strategies for student entrepreneurship support policies through a survey and analysis of KAIST students. The findings revealed that KAIST students recognize the urgent need for improvement in sharing policy objectives with the student entrepreneurship field, reflecting the opinions of the campus entrepreneurship scene in policy formulation, and constructing an entrepreneurship-friendly academic system for nurturing student entrepreneurs. Additionally, there was a highlighted need for enhancement in the capacity of implementing agencies, as well as in marketing and market development capabilities, and organizational management and practical skills as entrepreneurs within the educational curriculum. Consequently, this study proposes the following improvement measures: First, it calls for enhanced transparency and accessibility of entrepreneurship support policies, ensuring students clearly understand policy objectives and can easily access information. Second, it advocates for student-centered policy development, where students' opinions are actively incorporated to devise customized policies that consider their needs and the actual entrepreneurship environment. Third, there is a demand for improving entrepreneurship-friendly academic systems, encouraging more active participation in entrepreneurship activities by adopting or refining academic policies that recognize entrepreneurship activities as credits or expand entrepreneurship-related courses. Based on these results, it is expected that this research will provide valuable foundational data to actively support student entrepreneurship in science and technology specialized universities, foster an entrepreneurial spirit, and contribute to the creation of an innovation-driven entrepreneurship ecosystem that contributes to technological innovation and social value creation.

  • PDF

Study of Oil Palm Biomass Resources (Part 5) - Torrefaction of Pellets Made from Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 V - 오일팜 바이오매스 펠릿의 반탄화 연구 -)

  • Lee, Ji-Young;Kim, Chul-Hwan;Sung, Yong Joo;Nam, Hye-Gyeong;Park, Hyeong-Hun;Kwon, Sol;Park, Dong-Hun;Joo, Su-Yeon;Yim, Hyun-Tek;Lee, Min-Seok;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.2
    • /
    • pp.34-45
    • /
    • 2016
  • Global warming and climate change have been caused by combustion of fossil fuels. The greenhouse gases contributed to the rise of temperature between $0.6^{\circ}C$ and $0.9^{\circ}C$ over the past century. Presently, fossil fuels account for about 88% of the commercial energy sources used. In developing countries, fossil fuels are a very attractive energy source because they are available and relatively inexpensive. The environmental problems with fossil fuels have been aggravating stress from already existing factors including acid deposition, urban air pollution, and climate change. In order to control greenhouse gas emissions, particularly CO2, fossil fuels must be replaced by eco-friendly fuels such as biomass. The use of renewable energy sources is becoming increasingly necessary. The biomass resources are the most common form of renewable energy. The conversion of biomass into energy can be achieved in a number of ways. The most common form of converted biomass is pellet fuels as biofuels made from compressed organic matter or biomass. Pellets from lignocellulosic biomass has compared to conventional fuels with a relatively low bulk and energy density and a low degree of homogeneity. Thermal pretreatment technology like torrefaction is applied to improve fuel efficiency of lignocellulosic biomass, i.e., less moisture and oxygen in the product, preferrable grinding properties, storage properties, etc.. During torrefacton, lignocelluosic biomass such as palm kernell shell (PKS) and empty fruit bunch (EFB) was roasted under an oxygen-depleted enviroment at temperature between 200 and $300^{\circ}C$. Low degree of thermal treatment led to the removal of moisture and low molecular volatile matters with low O/C and H/C elemental ratios. The mechanical characteristics of torrefied biomass have also been altered to a brittle and partly hydrophobic materials. Unfortunately, it was much harder to form pellets from torrefied PKS and EFB due to thermal degradation of lignin as a natural binder during torrefaction compared to non-torrefied ones. For easy pelletization of biomass with torrefaction, pellets from PKS and EFB were manufactured before torrefaction, and thereafter they were torrefied at different temperature. Even after torrefaction of pellets from PKS and EFB, their appearance was well preserved with better fuel efficiency than non-torrefied ones. The physical properties of the torrefied pellets largely depended on the torrefaction condition such as reaction time and reaction temperature. Temperature over $250^{\circ}C$ during torrefaction gave a significant impact on the fuel properties of the pellets. In particular, torrefied EFB pellets displayed much faster development of the fuel properties than did torrefied PKS pellets. During torrefaction, extensive carbonization with the increase of fixed carbons, the behavior of thermal degradation of torrefied biomass became significantly different according to the increase of torrefaction temperature. In conclusion, pelletization of PKS and EFB before torrefaction made it much easier to proceed with torrefaction of pellets from PKS and EFB, leading to excellent eco-friendly fuels.

An Empirical Study on the Difference in Perception of Introducing Smart Port between Port Operators and Users in Gwangyang Port (스마트항만 도입에 대한 항만 운영자와 이용자 간의 인식차이에 관한 실증연구 - 광양항을 중심으로 -)

  • Choe, Song-Hui
    • Journal of Korea Port Economic Association
    • /
    • v.36 no.3
    • /
    • pp.99-114
    • /
    • 2020
  • Overseas advanced ports are promoting smartification, as well as full automation of the terminals surrounding container terminals. A smart port can be defined as a comprehensive concept that pursues increased operational efficiencies, maximization of profit, efficient use of energy, and construction of eco-friendly ports with the introduction of fourth-industrial-revolution technology, including port automation. However, Korea is making efforts to introduce fourth-industrial-revolution technology into ports, but indications are that they are somewhat insufficient compared to advanced ports abroad. Therefore, this study conducted a survey about operators and users of container terminals in Gwangyang Port by deriving the factors determining the introduction of smart ports, such as cost, service, time, safety, and environment, from previous studies. This study analyzed the factors determining the introduction of smart ports and moderating effects when the adjustment variables of operators and users were applied to the pros and cons. As a result of the analysis, it was found that port operators and users have a moderating effect on cost, time, safety, and environmental factors, but not on service factors. These results indicate that port operators try to reduce costs through efficient operation, time management, and by reducing safety accidents by building smart ports, but analysis showed that the negative effects of smart ports have affected port users. The results of this study were derived through a moderated regression analysis and suggested implications for introducing smart ports in the conclusion.

Properties of Liquid Chemical Grouting Material for Soil Grouting using Non-cement Binder (무시멘트 결합재를 사용한 지반 그라우팅용 약액주입재의 특성)

  • Lee, Jae-Hyun;Kim, Yong-Ro;Kim, Gyu-Yong;Yoon, Seong-Jin;Mun, Kyoung-Ju
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.45-52
    • /
    • 2016
  • In this research, characteristic properties of gel time and homo gel strength of liquid chemical grouting material for soil grouting using non-cement binder(NCB) were measured according to kinds of liquid B's Binders, W/B of liquid B's Binders and the volume ratio between liquid A and liquid B in order to examine on the applicability of soil grouting material using non-cement binder. The test was performed using NCB-1, NCB-2, NCB-3 which are environment-friendly inorganic binders developed by means of collaboration by our research team and which are different from chemical composition ratio each other. In conclusion, it was found that NCB could be applied to liquid soil grouting material using non-cement binder and replace ordinary portland cement, because NCB had the most excellent performance in certain section of gel time and homo gel strength in condition of this experiment.

Application Case of Test Construction of Hydro-Seeding Measures with Seed-Fertilizer-Soil Materials on the Slopes Along the National Road Between Munduk and Wubokgu (문덕우복구간 국도비탈면 종비토뿜어붙이기 시험시공 적용사례)

  • Jeon, Gi-Seong;Woo, Kyung-Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.6
    • /
    • pp.130-138
    • /
    • 2007
  • To protect the surface of ground-cutting slopes occurring at the national road substitute detour [roundabout road]construction jobsite between Munduk and Wubokgu within the jurisdiction of Pohang-si and environment-friendly road construction, a test execution of re-vegetation measures on the major slopes was done and the results are as follows : As a result of finding out the number of sprouting individuals on the test construction site, the average number of sprouting individuals on the three test spots by the method of revegetation measures D, revegetation measures A, and revegetation measures B was 1,292 number of per square meter, 1,190 number of per square meter, and 1,095 number of per square meter respectively, which statistics were higher than those of test spot by the revegetation measures C. As a result of finding out living plant's breeding index [weight in dried state], the average dried weight of living plant at the test spot by the method of revegetation measures B, in case of foreign herbal species, was the highest marking 8.96 grams per square meter, and the next was 6.86grams per square meter by the method of revegetation measures D, and the next after was 6.80 grams per square meter by the method of revegetation measures A, and the last 5.93 grams per square meter by the method of revegetation measures C. As a result of finding out the covering degree on the slopes, the same average covering degree of 80% and 77.5% in revegetation measures A and revegetation measures D individually, which showed a somewhat higher covering degree than those of revegetation measures B and revegetation measures C. As a result of finding out appearing plants on the test construction site, seeding plant life was found to be sprouting on all test spot while native and foreign herbal species and herbaceous plant as well as shrubs were growing in good harmony with each other. However, in case of revegetation measures B and revegetation measures C method, foreign plant species are dominantly growing. As a result of inspecting rifts on the slopes and the excavated state by water, there existed cracks in some of base materials only in revegetation measures C method applied spot.

Development of Oxo-biodegradable Transparent Bio Films Using Biomass and Biodegradable Catalyst (바이오매스 및 생분해 촉매제를 이용한 산화생분해 투명 바이오 필름 개발)

  • You, Young-Sun;Kim, Young-Tae;Park, Dae-Sung;Choi, Sung-Wook
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.133-139
    • /
    • 2017
  • Bio-based plastics containing the biomass content higher than 25 wt% have been considered as environment-friendly materials due to their effects on the reduction in the $CO_2$ emission and petroleum consumption as well as biodegradability after use. In this study, poly vinyl chloride, plant-derived plasticizers, by adding a biodegradable catalyst was observed a change in the biodegradability and physical properties. To produce the oxidative decomposition transparent bio film, which is broken down in the initial percent elongation and physical properties such as tensile strength, it was to test the safety of the product as a food packaging material. Poly vinyl chloride, primary plasticizer, secondary plasticizer, anti fogging agent, the combined stabilizer were mixed in a high speed mixer, then extruded using an extrusion molding machine, after cooling, winding, to produce a oxidative decomposition transparent bio film and the control film, with a thickness of $12{\mu}m$ through winder role. Mechanical properties tensile strength, elongation, and the maximum load elongation and biodegradation test. Transparent bio film produced by biodegradation catalyst is compared with the control film. Tensile strength and elongation of films were found to be no significant difference. Further, as a result of the biodegradation test for 45 days based on the ASTM D6954-04 method, biodegrability of film is 61.4%.