• Title/Summary/Keyword: Environment efficiency evaluation

Search Result 744, Processing Time 0.033 seconds

Evaluation of Indoor Air Quality in a Department of Radiation Oncology Located Underground (지하에 위치한 방사선종양학과에서의 실내공기 질 평가)

  • Kim, Won-Taek;Shin, Yong-Chul;Kang, Dong-Mug;Ki, Yong-Kan;Kim, Dong-Won;Kwon, Byung-Hyun
    • Radiation Oncology Journal
    • /
    • v.23 no.4
    • /
    • pp.243-252
    • /
    • 2005
  • Purpose: Indoor air quality (IAQ) in the radiation treatment center which is generally located underground is important to the health of hospital workers and patients treated over a long period of time. this study was conducted to measure and analyze the factors related to IAQ and subjective symptoms of sick building syndrome, and to establish the causes influencing IAQ and find a solution to the problems. Methods and Materials : Self administrated questionnaire was conducted to check the workers' symptoms and understanding of the work environment. Based on a preliminary investigation, the factors related to IAQ such as temperature, humidity, fine particulate. carbon dioxide, carbon monoxide, formaldehyde, total volatile organic compounds (TVOC), and radon gas were selected and measured for a certain period of time in specific sites where hospital workers stay long in a day. And we also evaluated the surrounding environment and the efficiency of the ventilating system simultaneously, and measured the same factors at the first floor (outdoor) to compare with outdoor all quality, All collected data were assessed by the recommended standard for IAQ of the domestic and international environmental organizations. Results: Hospital workers were discontented with foul odors, humidity and particulate. They complained symptoms related to musculo-skeletal system, neurologic system, and mucosal-irritatation. Most of the factors were not greater than the recommended standard, but the level of TVOC was third or fourth times as much as the measuring level of some offices in the United States. The frequency and the amount of the ventilating system were adequate, however, the problem arising in the position of outdoor-air inlets and indoor-air outlets involved a risk of the indraft of contaminated air. A careful attention was a requirement in handling and keeping chemical substances including a developing solution which has a risk of TVOC emissions, and repositioning the ventilating system was needed to solve the contaminated-air circulation immediately Conclusion We verified that some IAQ-related factors and inadequate ventilating system could cause subjective symptoms in hospital workers. The evaluation of IAQ was surely needed to improve the underground working environments for hospital workers and patients. On the basis of these data, from now on, we should actively engage in designs of the department of radiation oncology or improvement in environments of the existing facilities.

Evaluation of Land Use Change Impact on Hydrology and Water Quality Health in Geum River Basin (금강유역의 토지이용 변화가 수문·수질 건전성에 미치는 영향 평가)

  • LEE, Ji-Wan;PARK, Jong-Yoon;JUNG, Chung-Gil;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.82-96
    • /
    • 2019
  • This study evaluated the status of watershed health in Geum River Basin by SWAT (Soil and Water Assessment Tool) hydrology and water quality. The watershed healthiness from watershed hydrology and stream water quality was calculated using multivariate normal distribution from 0(poor) to 1(good). Before evaluation of watershed healthiness, the SWAT calibration for 11 years(2005~2015) of streamflow(Q) at 5 locations with 0.50~0.77 average Nash-Sutcliffe model efficiency and suspended solid (SS), total nitrogen(T-N), and total phosphorus(T-P) at 3 locations with 0.67~0.94, 0.59~0.79, and 0.61~0.79 determination coefficient($R^2$) respectively. For 24 years (1985~2008) the spatiotemporal change of watershed healthiness was analyzed with calibarted SWAT and 5 land use data of 1985, 1990, 1995, 2000, and 2008. The 2008 SWAT results showed that the surface runoff increased by 40.6%, soil moisture and baseflow decreased by 6.8% and 3.0% respectively compared to 1985 reference year. The stream water quality of SS, T-N, and T-P increased by 29.2%, 9.3%, and 16.7% respectively by land development and agricultural activity. Based on the 1985 year land use condition. the 2008 watershed healthiness of hydrology and stream water quality decreased from 1 to 0.94 and 0.69 respectively. The results of this study be able to detect changes in watershed environment due to human activity compared to past natural conditions.

Design and Implementation of a Scalable Real-Time Sensor Node Platform (확장성 및 실시간성을 고려한 실시간 센서 노드 플랫폼의 설계 및 구현)

  • Jung, Kyung-Hoon;Kim, Byoung-Hoon;Lee, Dong-Geon;Kim, Chang-Soo;Tak, Sung-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8B
    • /
    • pp.509-520
    • /
    • 2007
  • In this paper, we propose a real-time sensor node platform that guarantees the real-time scheduling of periodic and aperiodic tasks through a multitask-based software decomposition technique. Since existing sensor networking operation systems available in literature are not capable of supporting the real-time scheduling of periodic and aperiodic tasks, the preemption of aperiodic task with high priority can block periodic tasks, and so periodic tasks are likely to miss their deadlines. This paper presents a comprehensive evaluation of how to structure periodic or aperiodic task decomposition in real-time sensor-networking platforms as regard to guaranteeing the deadlines of all the periodic tasks and aiming to providing aperiodic tasks with average good response time. A case study based on real system experiments is conducted to illustrate the application and efficiency of the multitask-based dynamic component execution environment in the sensor node equipped with a low-power 8-bit microcontroller, an IEEE802.15.4 compliant 2.4GHz RF transceiver, and several sensors. It shows that our periodic and aperiodic task decomposition technique yields efficient performance in terms of three significant, objective goals: deadline miss ratio of periodic tasks, average response time of aperiodic tasks, and processor utilization of periodic and aperiodic tasks.

Evaluation of Purification Efficiency of Passive Treatment Systems for Acid Mine Drainage and Characterization of Precipitates in Ilwal Coal Mine (일월탄광에서 유출되는 산성광산배수 자연정화시설의 정화 효율 평가 및 침전물의 특성연구)

  • Ryu, Chung Seok;Kim, Yeong Hun;Kim, Jeong Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.97-105
    • /
    • 2014
  • Artificial precipitation ponds, consisting of three steps of oxidation pond, successive alkalinity producing system (SAPS) and swamp, were constructed for the treatment of the acid mine drainage from the Iwal coal mine. The efficacies of the passive treatment system in terms of neutralization of mine water and removal of dissolved ions were evaluated by the chemical analyses of the water samples. Mine water in the mine adits was acidic, showing the pH value of 2.28-2.42 but the value increased rapidly to 6.17-6.53 in the Oxidation pond. The purification efficiencies for the removal of Al and Fe were 100%, whereas those of $SO_4$, Mg, Ca, and Mn were relatively low of 50%, 40%, 24%, and 59%, respectively. These results indicate a need for application of additional remediation techniques in the passive treatment systems. The precipitates that formed at the bottom of the mine water channels were mainly schwertmannite ($Fe_8O_8(OH)_6SO_4$) and those in the leachate water were 2-line ferrihydrite ($Fe_2O_3{cdot}0.5H_2O$).

Impact Investment into Social Enterprises and Applicability to Korea (사회적기업의 임팩트투자와 한국 적용가능성 연구)

  • Chang, Sug-In;Jin, Jae-Keun;Choi, Ho-Gyu;Jeong, Kang-One
    • Management & Information Systems Review
    • /
    • v.39 no.2
    • /
    • pp.163-179
    • /
    • 2020
  • Recently, impact investment has attracted attention all over the world. This is intended to effectively solve problems by combining private capital and various financial techniques with social and environmental needs, as it is recognized that it is difficult to solve social and environmental problems. Impact investment means a mixture of financial, social, and environmental aspects. This refers to an investment focused on such a blended value, through which it simultaneously achieves financial and social values such as return on investment. The purpose of this study is to study whether impact investment, which has become a new issue, is actually applicable in Korea. This study first considers the concept and method of impact investment, and a prior study on social enterprises and impact investment that pursue social values. In particular, after analyzing in detail the social performance-related bonds (SIB) and operational cases, we intend to explore the possible applicability of impact investment to Korea. The results and implications of this study are, first, changes in the government's attitude toward impact finance. The government should entrust innovative public works to market-proven service providers to enhance the professionalism and efficiency of public service projects. Second, the legal system must innovate. Impact investment should provide an institutional foundation to pursue social problem solving simultaneously, not maximizing financial performance. Third, when investing in public works in the private sector, impact investment must clearly demand social performance and clarify the evaluation accordingly. The project execution process should create an impact environment that is more free and active.

Determination of Nutrient Contents of Liquid Pig Manure and the Correlation of Components as Fertilizer in Western JeJu Area (제주 서부지역 양돈장에서 생산된 돈분액비의 비료성분과 그 성분간 상관관계)

  • Song Sang-Taek;Kim Mun-Chol;Hwang Kyoung-Jun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.26 no.1
    • /
    • pp.15-24
    • /
    • 2006
  • This study was conducted to make a rapid and easy determination for the fertility of liquid pig manure as fertilizer by investigating the contents, and correlation coefficients of various nutrients. Samples were collected from 118 local pig farms in the western area of Jeju in Korea. Electrical conductivity(EC), dry matter(DM), $NH_4-N$ and minerals were determined and the relationships among them were examined. The collected liquid manure samples from 118 pig farms were classified according to the level of DM contents ;< 3% (92 farms), $3{\sim}6%$ (18 farms), $6{\sim}9%$ (5 farms) and>9% (3 farms), based on the collected data, most of the liquid manure coming from the local pig farms contain small amount of dry matter. The dry matter contents appeared highly correlated(p<0.01) with EC, $NH_4-N$, T-P, Ca, Mg and Na, except for K. In addition EC was proportional to $NH_4-N$, T-P, Ca, and Na except fer Mg. The fertilizer component ratio of $NH_4-N$, P and K in liquid pig manure were not constant, resulting in low efficiency for fertilizer. However, the toxic heavy metals of Cu etc. were below the criteria of organic fertilizer and soil contamination evaluation. Therefore, we concluded that both dry matter content and electrical conductivity could be used as an indicator for evaluating the fertility of liquid pig manure.

Indexation and Importance Evaluation of Farmers' Acceptance Factors for New Farming Technologies (농가의 영농 신기술 수용요인 지표화 및 중요도 평가)

  • Jeong, Yun Hee;Seo, Sangtaek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.254-263
    • /
    • 2020
  • This study developed indexes of farmers' acceptance factors for new farming technologies and evaluated the importance of the developed. For this study, farming technologies were classified according to the criteria established by the Rural Development Administration, and the Delphi technique was applied to evaluate the importance of the indexes. The indexes were composed of two tiers and evaluated by the analytic hierarchy process (AHP). Results showed that the importance of the first tier was finance and profitability with 43.9%, technology affairs 23.6%, labor environments 22.4%, and related industries and service system 10.1%. The importance of the second tier was the ease of technology acceptance 64.9% and technology completion 35.1% for technology affairs in the first tier, labor intensity 53.7%, work hazard 26.7%, working hours 19.6% for labor environment, farm income increment 69.9% and new fund required 30.1% for finance and profitability, and training and service system 66.7% and activation of related industries 33.7% for related industry and service system. This study may contribute to farmers' acceptance of new farming technologies and increase the efficiency and effectiveness of agricultural research and extension activities by the Rural Development Administration.

On the Spectral Efficient Physical-Layer Network Coding Technique Based on Spatial Modulation (효율적 주파수사용을 위한 공간변조 물리계층 네트워크 코딩기법 제안)

  • Kim, Wan Ho;Lee, Woongsup;Jung, Bang Chul;Park, Jeonghong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.902-910
    • /
    • 2016
  • Recently, the volume of mobile data traffic increases exponentially due to the emergence of various mobile services. In order to resolve the problem of mobile traffic increase, various new technologies have been devised. Especially, two-way relay communication in which two nodes can transfer data simultaneously through relay node, has gained lots of interests due to its capability to improve spectral efficiency. In this paper, we analyze the SM-PNC which combines Physical-layer Network Coding (PNC) and Spatial Modulation (SM) under two-way relay communication environment. Log-Likelihood Ratio (LLR) is considered and both separate decoding and direct decoding have been taken into account in performance analysis. Through performance evaluation, we have found that the bit error rate of the proposed scheme is improved compared to that of the conventional PNC scheme, especially when SNR is high and the number of antennas is large.

Evaluation of Depth Measurement Method Based on Spectral Characteristics Using Hyperspectrometer (초분광 스펙트로미터를 활용한 분광특성 기반의 수심 측정 기법 적용성 검토)

  • You, Hojun;Kim, Dongsu;Shin, Hyoungsub
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.103-119
    • /
    • 2020
  • Recently, the rapid redeposition and erosion of rivers artificially created by climate change and the Four Rivers Restoration Project is questionable. According to the revised law in Korea, the river management agency will periodically carry out bed changes surveys. However, there are technical limitations in contrast to the trend of increasing spatial coverage, density and narrowing of intervals. National organizations are interest in developing innovative bed changessurvey techniquesfor efficiency. Core of bathymetry survey is to measure the depth of rivers under a variety of river conditions, but that is relatively more risky, time-consuming and expensive compared to conventional ground surveys. To overcome the limitations of traditional technology, echo sounder, which has been mainly used for ocean depth surveying, has been applied to rivers. However, due to various technical limitations, it is still difficult to periodically investigate a wide range of areas. Therefore, technique using the remote sensing has been spotlighted as an alternative, especially showing the possibility of depth measurement using spectral characteristics. In this study, we develop and examine a technique that can measure depth of water using reflectance from spectral characteristics. As a result of applying the technique proposed in thisstudy, it was confirmed that the measured depth and the correlation and error corresponding to 0.986 and 0.053 m were measured in the depth range within 0.95 m. In the future, this study could be applied to the measurement of spatial depth if it is applied to the hyperspectral sensor mounted on the drone.

Evaluation of the Effect of Flocculator Rotation Direction in Floccualation Basin on Hydrodynamic Behavior using CFD (CFD를 이용한 플록큐레이터 회전방향에 따른 플록형성지 유동 평가)

  • Cho, Young-Man;Yoo, Soo-Jeon;Roh, Jae-Soon;Kim, taek-Jun;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.364-370
    • /
    • 2009
  • With time, the stable management of turbidity is becoming more important in the water treatment process. So optimization of flocculation is important for the improvement of the sedimentation efficiency. we evaluated the hydrodynamic behavior in the rotation direction (clock-wise, counterclock-wise) of the flocculator in the flocculation basin using Computational Fluid Dynamics (CFD). The results of the CFD simulation, in cases where flocculators rotate in a clockwise direction, a stronger flow is formed near the surface of the water where the rotating direction and current of flow correspond. The variance and standard deviation of the flux are about 8.5 and 2.9 respectively. In contrast, in the case of a counterclockwise direction, a stronger flow is formed near the bottom of the basin. The variance and standard deviation of the flux are about 5.3 and 2.3, respectively. The effluent flux is affected more by the third flocculator spin than the first and second flocculator spins. The third flocculator spinning in the counterclockwise direction is better for the uniform flow of the sedimentation basin than the third flocculator spinning in the clockwise direction