• Title/Summary/Keyword: Envelope Protein

검색결과 112건 처리시간 0.046초

Western Blot Detection of Human Anti-Chikungunya Virus Antibody with Recombinant Envelope 2 Protein

  • Yang, Zhaoshou;Lee, Jihoo;Ahn, Hye-Jin;Chong, Chom-Kyu;Dias, Ronaldo F.;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • 제54권2호
    • /
    • pp.239-241
    • /
    • 2016
  • Chikungunya virus (CHIKV), a tropical pathogen, has re-emerged and has massive outbreaks abruptly all over the world. Containing many dominant epitopes, the envelope E2 protein of CHIKV has been explored for the vaccination or diagnosis. In the present study, the antigenicity of a recombinant expressed intrinsically disorder domain (IUD) of E2 was tested for the detection of the antibody against CHIKV through western blot method. The gene of the IUD of E2 was inserted into 2 different vectors and expressed as recombinant GST-E2 and recombinant MBP-E2 fusion protein, respectively. Two kinds of fusion proteins were tested with 30 CHIKV patient sera and 30 normal sera, respectively. Both proteins were detected by 25 patients sera (83.3%) and 1 normal serum (3.3%). This test showed a relatively high sensitivity and very high specificity of the recombinant E2 proteins to be used as diagnostic antigens against CHIKV infection.

Choristoneura fumiferana Granulovirus p74 Protein, a Highly Conserved Baculoviral Envelope Protein

  • Rashidan, Kianoush Khajeh;Nassoury, Nasha;Tazi, Samia;Giannopoulos, Paresa N.;Guertin, Claude
    • BMB Reports
    • /
    • 제36권5호
    • /
    • pp.475-487
    • /
    • 2003
  • A gene that encodes a homologue to baculoviral p74, an envelope-associated viral structural protein, has been identified and sequenced on the genome of Choristoneura fumiferana granulovirus (ChfuGV). A part of the ChfuGV p74 gene was located on an 8.9 kb BamHI subgenomic fragment using different sets of degenerated primers. These were designed using the results of the protein sequencing of a major 74 kDa structural protein that is associated with the occlusion-derived virus (ODV). The gene has a 1992 nucleotide (nt) open-reading frame (ORF) that encodes a protein with 663 amino acids with a predicted molecular mass of 74,812 Da. Comparative studies revealed the presence of two major conserved regions in the ChfuGV p74 protein. This study also shows that all of the p74 proteins contain two putative transmembrane domains at their C-terminal segments. At the nucleotide sequence level, two late promoter motifs (TAAG and GTAAG) were located upstream of the first ATG of the p74 gene. The gene contained a canonical poly(A) signal, AATAAA, at its 3' non-translated region. A phylogenetic tree for baculoviral p74 was constructed using a maximum parsimony analysis. The phylogenetic estimation demonstrated that ChfuGV p74 is related the closest to those of Cydia pomonella granulovirus (CpGV) and Phthorimaea operculella granulovirus (PhopGV).

Genetic Variations Leading to Familial Dilated Cardiomyopathy

  • Cho, Kae Won;Lee, Jongsung;Kim, Youngjo
    • Molecules and Cells
    • /
    • 제39권10호
    • /
    • pp.722-727
    • /
    • 2016
  • Cardiomyopathy is a major cause of death worldwide. Based on pathohistological abnormalities and clinical manifestation, cardiomyopathies are categorized into several groups: hypertrophic, dilated, restricted, arrhythmogenic right ventricular, and unclassified. Dilated cardiomyopathy, which is characterized by dilation of the left ventricle and systolic dysfunction, is the most severe and prevalent form of cardiomyopathy and usually requires heart transplantation. Its etiology remains unclear. Recent genetic studies of single gene mutations have provided significant insights into the complex processes of cardiac dysfunction. To date, over 40 genes have been demonstrated to contribute to dilated cardiomyopathy. With advances in genetic screening techniques, novel genes associated with this disease are continuously being identified. The respective gene products can be classified into several functional groups such as sarcomere proteins, structural proteins, ion channels, and nuclear envelope proteins. Nuclear envelope proteins are emerging as potential molecular targets in dilated cardiomyopathy. Because they are not directly associated with contractile force generation and transmission, the molecular pathways through which these proteins cause cardiac muscle disorder remain unclear. However, nuclear envelope proteins are involved in many essential cellular processes. Therefore, integrating apparently distinct cellular processes is of great interest in elucidating the etiology of dilated cardiomyopathy. In this mini review, we summarize the genetic factors associated with dilated cardiomyopathy and discuss their cellular functions.

Inducible spy Transcription Acts as a Sensor for Envelope Stress of Salmonella typhimurium

  • Jeong, Seon Mi;Lee, Hwa Jeong;Park, Yoon Mee;Kim, Jin Seok;Lee, Sang Dae;Bang, Iel Soo
    • 한국축산식품학회지
    • /
    • 제37권1호
    • /
    • pp.134-138
    • /
    • 2017
  • Salmonella enterica infects a broad range of host animals, and zoonostic infection threatens both public health and the livestock and meat processing industries. Many antimicrobials have been developed to target Salmonella envelope that performs essential bacterial functions; however, there are very few analytical methods that can be used to validate the efficacy of these antimicrobials. In this study, to develop a potential biosensor for Salmonella envelope stress, we examined the transcription of the S. enterica serovar typhimurium spy gene, the ortholog of which in Escherichia coli encodes Spy (${\underline{s}}pheroplast$ ${\underline{p}}rotein$ ${\underline{y}}$). Spy is a chaperone protein expressed and localized in the periplasm of E. coli during spheroplast formation, or by exposure to protein denaturing conditions. spy expression in S. typhimurium was examined by constructing a spy-gfp transcriptional fusion. S. typhimurium spy transcription was strongly induced during spheroplast formation, and also when exposed to membrane-disrupting agents, including ethanol and the antimicrobial peptide polymyxin B. Moreover, spy induction required the activity of regulator proteins BaeR and CpxR, which are part of the major envelope stress response systems BaeS/BaeR and CpxA/CpxR, respectively. Results suggest that monitoring spy transcription may be useful to determine whether a molecule particularly cause envelope stress in Salmonella.

돼지 콜레라 바이러스 E2 유전자의 클로닝 및 염기서열분석 (Cloning and Sequence Analysis of Hog Cholera Virus(HCV) E2 Gene)

  • 이영기;강신웅;김선원;박성원;이종철;이청호
    • 한국연초학회지
    • /
    • 제23권2호
    • /
    • pp.103-108
    • /
    • 2001
  • Hog cholera virus(HCV) was purified from virus infected Bovine kidney cells. From this virus, total protein was analyzed by SDS-PAGE gel electrophoresis and about 55 kDa band of E2 envelope protein was detected. The viral RNA was purified and E2 cDNA was amplified by RT-PCR. E2 cDNA fragment was cloned to PCRII-TOPO cloning vector and named pE2. The analysis of nucleotide sequence showed that this E2 cDNA fragment inserted into pE2 was 1191 nucleotides long and coded 397 amino acids.

  • PDF

Protective Immunity of Pichia pastoris-Expressed Recombinant Envelope Protein of Japanese Encephalitis Virus

  • Kwon, Woo-Taeg;Lee, Woo-Sik;Park, Pyo-Jam;Park, Tae-Kyu;Kang, Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권11호
    • /
    • pp.1580-1587
    • /
    • 2012
  • Japanese encephalitis virus (JEV) envelope (E) protein holds great promise for use in the development of a recombinant vaccine. Purified recombinant E (rE) protein may be useful for numerous clinical applications; however, there are limitations in using the Escherichia coli expression system for producing high-quality rE protein. Therefore, in this study, the yeast expression system was used to generate the rE protein. For protein production using the yeast system, the full-length JEV E gene was cloned into Pichia pastoris. SDS-PAGE and immunoblotting analysis demonstrated that the rE protein had a molecular mass of 58 kDa and was glycosylated. The predicted size of the mature unmodified E protein is 53 kDa, suggesting that post-translational modifications resulted in the higher molecular mass. The rE protein was purified to greater than 95% purity using combined ammonium sulfate precipitation and a SP-Sepharose Fast Flow column. This purified rE protein was evaluated for immunogenicity and protective efficacy in mice. The survival rates of mice immunized with the rE protein were significantly increased over that of Hyphantria cunea nuclear polyhedrosis virus E protein (HcE). Our results indicate that the rE protein expressed in the P. pastoris expression system holds great promise for use in the development of a subunit vaccine against JEV.

지카 바이러스 및 뎅기 바이러스의 외피 단백질을 구성하는 도메인의 생물정보학적 분석 (Bioinformatic Analysis of Envelope Protein Domains of Zika Virus and Dengue Virus)

  • 최재원;김학용
    • 한국콘텐츠학회논문지
    • /
    • 제19권11호
    • /
    • pp.632-643
    • /
    • 2019
  • 최근 지구 기후의 변화, 해외 여행객의 증가 및 국가 간 물류 이동의 증가 등과 같은 요인으로 인해 모기와 같은 절지동물이 매개하는 아보바이러스(arthropod-borne virus, arbovirus) 감염으로 인한 대규모의 피해가 전 세계적으로 끊임없이 발생하고 있다. 그 중에서도 플라비바이러스 속에 해당하는 지카 바이러스와 뎅기바이러스에 의한 피해가 대표적이다. 본 연구에서는 다양한 생물정보학 데이터베이스를 바탕으로 지카 바이러스 및 뎅기 바이러스가 숙주 감염에 필수적인 기능을 수행하는 외피 단백질에 대한 심층적인 분석을 수행했다. 외피 단백질을 구성하는 도메인들에 대한 분석을 통해 도메인의 종류, 위치 및 기능을 파악했으며 각 도메인별 상동성을 분석했다. 이로부터 낮은 상동성을 보이는 도메인인 EDIII를 도출하였으며, EDIII를 구성하는 펩타이드에 대한 상동성 및 면역원성 분석과 3차원 구조 모델링을 수행했다. 더 나아가 이들이 갖는 생물학적 의미와 활용 방안에 대해 논의했다.

Microsecond molecular dynamics simulations revealed the inhibitory potency of amiloride analogs against SARS-CoV-2 E viroporin

  • Jaber, Abdullah All;Chowdhury, Zeshan Mahmud;Bhattacharjee, Arittra;Mourin, Muntahi;Keya, Chaman Ara;Bhuyan, Zaied Ahmed
    • Genomics & Informatics
    • /
    • 제19권4호
    • /
    • pp.48.1-48.10
    • /
    • 2021
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes small envelope protein (E) that plays a major role in viral assembly, release, pathogenesis, and host inflammation. Previous studies demonstrated that pyrazine ring containing amiloride analogs inhibit this protein in different types of coronavirus including SARS-CoV-1 small envelope protein E (SARS-CoV-1 E). SARS-CoV-1 E has 93.42% sequence identity with SARS-CoV-2 E and shared a conserved domain NS3/small envelope protein (NS3_envE). Amiloride analog hexamethylene amiloride (HMA) can inhibit SARS-CoV-1 E. Therefore, we performed molecular docking and dynamics simulations to explore whether amiloride analogs are effective in inhibiting SARS-CoV-2 E. To do so, SARS-CoV-1 E and SARS-CoV-2 E proteins were taken as receptors while HMA and 3-amino-5-(azepan-1-yl)-N-(diaminomethylidene)-6-pyrimidin-5-ylpyrazine-2-carboxamide (3A5NP2C) were selected as ligands. Molecular docking simulation showed higher binding affinity scores of HMA and 3A5NP2C for SARS-CoV-2 E than SARS-CoV-1 E. Moreover, HMA and 3A5NP2C engaged more amino acids in SARS-CoV-2 E. Molecular dynamics simulation for 1 ㎲ (1,000 ns) revealed that these ligands could alter the native structure of the proteins and their flexibility. Our study suggests that suitable amiloride analogs might yield a prospective drug against coronavirus disease 2019.

Retrovirus Vector를 이용한 동물 수정란에의 유전자 전이 (Retrovirus Vector-mediated Gene Transfer into the Fertilized Embryos of the Farm Animals)

  • 김태완
    • 한국가축번식학회지
    • /
    • 제19권4호
    • /
    • pp.293-305
    • /
    • 1996
  • Retrovirus는 DNA가 아닌 RNA를 유전 물질로 갖고 있는 동물 virus인데 각 virus는 RNA와 함께 크게 gag, pol. 그리고 env 등의 3가지 단백질로 구성되어 있다. gag 단백질은 virus의 내부구조를 형성하는 단백질이고, pol단백질은 감염을 통해 표적 세포에 도입된 retrovirus의 RNA를 DNA로 역전사시키는 reverse transcriptase의 역할을 하며, env단백질은 virusdml 외부를 구성하는 단백질로써 이 단백질에 의해 각 retrovirus의 종류에 따른 감염이 가능한 표적세포의 종류가 결정된다(host cell specificity). 따라서 어떤 retrovirus의 envelope단백질과 표식세포에 있는 retrovirus의 envelope 단백질에 대한 특정 receptor와의 상호 작용에 의해 세포속으로 도입된 virus의 RNA는 reverse transcriptase에 의해 DNA로 역전사된 후 표적세포의 genomic DNA에 삽입되는 특징을 가진다. 이러한 특징을 가진 retrovirus vector system은 형질 전환 동물의 생산에 있어서 현재까지의 주된 방법인 수정란의 pronucleus에의 DNA microinjection방법 보다 여러 가지 면에서 우수함에도 불구하고 쥐 이외의 다른 동물에서는 거의 이용되고 있지 않는 실정이다. 주된 원인으로는 현재 사용되고 있는 대부분의 retrovirus vector system이 쥐의 백혈병 virus를 근간으로 하기 때문에 이 system에서 생산된 virus는 쥐 이외의 다른 동물, 특히 유제류의 세포에는감염성이 아주 약하기 때문이다. 이러한 결점을 해결하기 위하여 최근에 기존의 쥐 백혈병 virus의 envelope protein을 vesicular stomatitis virus의 G protein으로 대체한 hybrid retrovirus vector system이 개발되었다. 이러한 system에서 생산되는 virus는 조류를 포함한 거의 모든 종류의 동물세포를 감염시킬 수 있으며 몇몇 특정세포에 대해서는 기존의 retrovirus vector system에 비해 1,000배 이상의 높은 감염도를 나타내는데 그 특징이 있다. 따라서 이러한 새로운 virus vector system을 이용할 경우, 보다 다양한 종에 있어서 형질전환 동물을 효율적으로 생산할 수 있을 뿐만 아니라 형질전환 동물의 생산 방법 자체를 다양화 시킬 수 있다고 본다.

  • PDF