DOI QR코드

DOI QR Code

Inducible spy Transcription Acts as a Sensor for Envelope Stress of Salmonella typhimurium

  • Jeong, Seon Mi (Department of Microbiology and Immunology, Chosun University School of Dentistry) ;
  • Lee, Hwa Jeong (Department of Microbiology and Immunology, Chosun University School of Dentistry) ;
  • Park, Yoon Mee (Department of Microbiology and Immunology, Chosun University School of Dentistry) ;
  • Kim, Jin Seok (Division of Life Science, College of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Sang Dae (Department of Biological Sciences, Seonam University) ;
  • Bang, Iel Soo (Department of Microbiology and Immunology, Chosun University School of Dentistry)
  • Received : 2017.01.20
  • Accepted : 2017.02.01
  • Published : 2017.02.28

Abstract

Salmonella enterica infects a broad range of host animals, and zoonostic infection threatens both public health and the livestock and meat processing industries. Many antimicrobials have been developed to target Salmonella envelope that performs essential bacterial functions; however, there are very few analytical methods that can be used to validate the efficacy of these antimicrobials. In this study, to develop a potential biosensor for Salmonella envelope stress, we examined the transcription of the S. enterica serovar typhimurium spy gene, the ortholog of which in Escherichia coli encodes Spy (${\underline{s}}pheroplast$ ${\underline{p}}rotein$ ${\underline{y}}$). Spy is a chaperone protein expressed and localized in the periplasm of E. coli during spheroplast formation, or by exposure to protein denaturing conditions. spy expression in S. typhimurium was examined by constructing a spy-gfp transcriptional fusion. S. typhimurium spy transcription was strongly induced during spheroplast formation, and also when exposed to membrane-disrupting agents, including ethanol and the antimicrobial peptide polymyxin B. Moreover, spy induction required the activity of regulator proteins BaeR and CpxR, which are part of the major envelope stress response systems BaeS/BaeR and CpxA/CpxR, respectively. Results suggest that monitoring spy transcription may be useful to determine whether a molecule particularly cause envelope stress in Salmonella.

Keywords

References

  1. Appia-Ayme, C., Hall, A., Patrick, E., Rajadurai, S., Clarke, T. A., and Rowley, G. (2012) ZraP is a periplasmic molecular chaperone and a repressor of the zinc-responsive two-component regulator ZraSR. Biochem. J. 442, 85-93. https://doi.org/10.1042/BJ20111639
  2. Birdsell, D. C. and Cota-Robles, E. H. (1967) Production and ultrastructure of lysozyme and ethylenediaminetetraacetatelysozyme spheroplasts of Escherichia coli. J. Bacteriol. 93, 427-437.
  3. Bury-Mone, S., Nomane, Y., Reymond, N., Barbet, R., Jacquet, E., Imbeaud, S., Jacq, A., and Bouloc, P. (2009) Global analysis of extracytoplasmic stress signaling in Escherichia coli. PLoS Genet. 5, e1000651. https://doi.org/10.1371/journal.pgen.1000651
  4. Crump, J. A., Sjolund-Karlsson, M., Gordon, M. A., and Parry, C. M. (2015) Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin. Microbiol. Rev. 28, 901-937. https://doi.org/10.1128/CMR.00002-15
  5. Datsenko, K. A. and Wanner, B. L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640-6645. https://doi.org/10.1073/pnas.120163297
  6. Doyle, M. E. (2015) Multidrug-resistant pathogens in the food supply. Foodborne Pathog. Dis. 12, 261-279. https://doi.org/10.1089/fpd.2014.1865
  7. Hagenmaier, S., Stierhof, Y. D., and Henning, U. (1997) A new periplasmic protein of Escherichia coli which is synthesized in spheroplasts but not in intact cells. J. Bacteriol. 179, 2073-2076. https://doi.org/10.1128/jb.179.6.2073-2076.1997
  8. Kirk, M. D., Pires, S. M., Black, R. E., Caipo, M., Crump, J. A., Devleesschauwer, B., Dopfer, D., Fazil, A., Fischer-Walker, C. L., Hald, T., Hall, A. J., Keddy, K. H., Lake, R. J., Lanata, C. F., Torgerson, P. R., Havelaar, A. H., and Angulo, F. J. (2015) World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: A data synthesis. PLoS Med. 12, e1001921. https://doi.org/10.1371/journal.pmed.1001921
  9. L Plym, F. and Wierup, M. (2006) Salmonella contamination: A significant challenge to the global marketing of animal food products. Rev. Sci. Tech. 25, 541-554. https://doi.org/10.20506/rst.25.2.1683
  10. Park, Y. M., Lee, H. J., Jeong, J. H., Kook, J. K., Choy, H. E., Hahn, T. W., and Bang, I. S. (2015) Branched-chain amino acid supplementation promotes aerobic growth of Salmonella typhimurium under nitrosative stress conditions. Arch. Microbiol. 197, 1117-1127. https://doi.org/10.1007/s00203-015-1151-y
  11. Quan, S., Koldewey, P., Tapley, T., Kirsch, N., Ruane, K. M., Pfizenmaier, J., Shi, R., Hofmann, S., Foit, L., Ren, G., Jakob, U., Xu, Z., Cygler, M., and Bardwell, J. C. A. (2011) Genetic selection designed to stabilize proteins uncovers a chaperone called Spy. Nat. Struct. Mol. Biol. 18, 262-269. https://doi.org/10.1038/nsmb.2016
  12. Raffa, R. G. and Raivio, T. L. (2002) A third envelope stress signal transduction pathway in Escherichia coli. Mol. Microbiol. 45, 1599-1611. https://doi.org/10.1046/j.1365-2958.2002.03112.x
  13. Rowley, G., Spector, M., Kormanec, J., and Roberts, M. (2006) Pushing the envelope: Extracytoplasmic stress responses in bacterial pathogens. Nat. Rev. Microbiol. 4, 383-394. https://doi.org/10.1038/nrmicro1394
  14. Srivastava, S. K., Lambadi, P. R., Ghosh, T., Pathania, R., and Navani, N. K. (2014) Genetic regulation of spy gene expression in Escherichia coli in the presence of protein unfolding agent ethanol. Gene. 548, 142-148. https://doi.org/10.1016/j.gene.2014.07.003
  15. Valdivia, R. H. and Falkow, S. (1996) Bacterial genetics by flow cytometry: Rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol. Microbiol. 22, 367-378. https://doi.org/10.1046/j.1365-2958.1996.00120.x
  16. Wales, A. D., Allen, V. M., and Davies, R. H. (2010) Chemical treatment of animal feed and water for the control of Salmonella. Foodborne Pathog. Dis. 7, 3-15. https://doi.org/10.1089/fpd.2009.0373
  17. Wang, D. and Fierke, C. A. (2013) The BaeSR regulon is involved in defense against zinc toxicity in E. coli. Metallomics 5, 372-383. https://doi.org/10.1039/c3mt20217h
  18. Wolf, D. and Mascher, T. (2016) The applied side of antimicrobial peptide-inducible promoters from Firmicutes bacteria: Expression systems and whole-cell biosensors. Appl. Microbiol. Biotechnol. 100, 4817-4829. https://doi.org/10.1007/s00253-016-7519-3

Cited by

  1. Occurrence and molecular characterization of Staphylococcus aureus strains isolated from meat and dairy products by PCR-RFLP vol.60, pp.2, 2010, https://doi.org/10.1007/s13213-010-0025-4
  2. Occurrence and characterization of enterotoxigenic Staphylococcus aureus isolated from minimally processed vegetables and sprouts in Korea vol.19, pp.2, 2010, https://doi.org/10.1007/s10068-010-0045-7
  3. Prevalence and characterization of foodborne bacteria from meat products in Korea vol.21, pp.5, 2012, https://doi.org/10.1007/s10068-012-0165-3
  4. Exposure to Sub-inhibitory Concentrations of the Chemosensitizer 1-(1-Naphthylmethyl)-Piperazine Creates Membrane Destabilization in Multi-Drug Resistant Klebsiella pneumoniae vol.10, pp.1664-302X, 2019, https://doi.org/10.3389/fmicb.2019.00092
  5. Comparison of Antibiogram, Staphylococcal Enterotoxin Productivity, and Coagulase Genotypes among Staphylococcus aureus Isolated from Animal and Vegetable Sources in Korea vol.70, pp.11, 2017, https://doi.org/10.4315/0362-028x-70.11.2541
  6. Periplasmic Chaperones and Prolyl Isomerases vol.8, pp.1, 2017, https://doi.org/10.1128/ecosalplus.esp-0005-2018
  7. Salmonella Enteritidis와 Salmonella Gallinarum의 세균막 스트레스를 인식하는 spy-gfp 오페론 융합 vol.36, pp.4, 2017, https://doi.org/10.22424/jmsb.2018.36.4.208