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Introduction 

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the etiological agent of 
coronavirus disease 2019 (COVID-19), is a threat to the global public health and econo-
my [1]. SARS-CoV or SARS-CoV-1, which is around 80% genetically similar to SARS-
CoV-2, initiated the fatal outbreak of severe acute respiratory syndrome (SARS) in South-
east China, 2002 [2-5]. SARS-CoV-1 and SARS-CoV-2 encode viroporins (VPs) that ex-
hibit ion channel (IC) activity in both host cell and virion. VPs are crucial factors for viral 
pathogenesis, infection cycle, virion morphogenesis, assembly, and viral release from the 
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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes small envelope 
protein (E) that plays a major role in viral assembly, release, pathogenesis, and host inflam-
mation. Previous studies demonstrated that pyrazine ring containing amiloride analogs in-
hibit this protein in different types of coronavirus including SARS-CoV-1 small envelope 
protein E (SARS-CoV-1 E). SARS-CoV-1 E has 93.42% sequence identity with SARS-CoV-2 
E and shared a conserved domain NS3/small envelope protein (NS3_envE). Amiloride ana-
log hexamethylene amiloride (HMA) can inhibit SARS-CoV-1 E. Therefore, we performed 
molecular docking and dynamics simulations to explore whether amiloride analogs are ef-
fective in inhibiting SARS-CoV-2 E. To do so, SARS-CoV-1 E and SARS-CoV-2 E proteins 
were taken as receptors while HMA and 3-amino-5-(azepan-1-yl)-N-(diaminome-
thylidene)-6-pyrimidin-5-ylpyrazine-2-carboxamide (3A5NP2C) were selected as ligands. 
Molecular docking simulation showed higher binding affinity scores of HMA and 3A5NP2C 
for SARS-CoV-2 E than SARS-CoV-1 E. Moreover, HMA and 3A5NP2C engaged more ami-
no acids in SARS-CoV-2 E. Molecular dynamics simulation for 1 μs (1,000 ns) revealed that 
these ligands could alter the native structure of the proteins and their flexibility. Our study 
suggests that suitable amiloride analogs might yield a prospective drug against coronavirus 
disease 2019. 
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host cells [6,7]. Besides SARS-like coronaviruses, other pathogenic 
human viruses such as human immunodeficiency virus-1 (HIV-1), 
influenza A virus (IAV), rotavirus also encode VPs [7-10]. VPs in-
duce ion imbalance within host cells and disrupt cellular pathways 
via various protein-protein interactions [11].  

SARS-CoV-1 encodes VPs from small envelope protein E, ORF3a 
and ORF8a genes. Protein E and ORF3a interact with cellular pro-
teins via PDZ-binding motif and exerts IC activity. These functions 
are essential for optimal viral replication. However, among these 3 
VP-forming genes, protein E was indispensable for viral virulence 
[12]. Protein E forms calcium ion (Ca2+) channels in the endoplas
mic reticulum golgi apparatus intermediate compartment (ER-
GIC)/Golgi membranes. These ICs alter calcium homeostasis in 
host cells and activate the cytosolic innate immune signaling recep-
tor NLR family pyrin domain containing 3 inflammasome [13,14]. 
Absence of protein E attenuates the viral infectious activity by reduc-
ing nuclear factor kB mediated inflammation [15]. Therefore, pro-
tein E can be a plausible therapeutic target for COVID-19.  

Previous studies demonstrated that VP-like prototypic M2 proton 
selective channel of IAV can be an ideal target for antiviral develop-
ment [16]. All coronavirus E proteins are assumed to form cat-
ion-selective ion channels which participate in viral replication and 
virus’s life cycle [17,18]. The actions of VPs in SARS-CoV-2 may 
also be figured out from other CoVs e.g., Middle East respiratory 
syndrome coronavirus and human coronavirus 229E (HCoV-229E) 
[5,6,19]. Deletion of E gene from SARS-CoV-1 significantly de-
creased the viral pathogenesis [15]. Moreover, the usage of the chan-
nel blocking compounds such as amiloride analogs had substantially 
alleviated the viral replications of HCoV-229E, murine hepatitis vi-
rus (MHV), and SARS-CoV-1 [20,21]. Here, the amiloride analogs 
interacted with the E proteins and inhibited the functions of VP 
[22,23]. These results have raised a possibility to develop a broad 
spectrum antiviral drug against coronaviruses [20-23]. Aside from 
coronaviruses, Amiloride derivatives (particularly hexamethylene 

amiloride [HMA]) were found to be efficient inhibitors of ICs in 
hepatitis C virus, influenza virus, and HIV-1 [7-9]. Since E gene of 
SARS-CoV-1 and SARS-CoV-2 are highly identical (Table 1, Sup-
plementary Data 1), implementation of different in silico tools can 
unveil the anti-SARS-CoV-2 E mechanisms of amiloride analogs 
[24,25]. 

Amiloride is a pyrazine ring containing compound that inhibits 
sodium-hydrogen antiporter 1 (NHE-1) and promotes diuresis 
[26]. Analogs of amiloride such as 5-(N,N-Hexamethylene) ami-
loride or HMA (PubChem CID: 1794) can inhibit urokinase-type 
plasminogen activator (uPA) which is an important protease for tu-
mor cell to undergo metastasis [27,28]. HMA has antiviral activities 
with little K+ sparing diuretic effect and 3-Amino-5-(azepan-1-yl) 
-N-(diaminomethylidene)-6-pyrimidin-5-ylpyrazine-2-carboxam-
ide (3A5NP2C) (PubChem CID: 137348787), a structurally simi-
lar compound, has very little cytotoxic properties in human cells 
[27,29]. In this study, we explored the anti-SARS-CoV-2 E activities 
of HMA and 3A5NP2C. Through molecular docking and molecu-
lar dynamics simulations, we showed that these small molecules 
could bind and alter the structure of SARS-CoV-2 E in golgi mem-
brane lipid bilayer. Our study suggests that amiloride analogs could 
be a druggable compound for COVID-19. 

Methods 

Characterization of SARS-CoV-2 E VP 
For characterization of the SARS-CoV-2 E, the E protein (accession: 
YP_009724392.1) went under Protein Basic Local Alignment 
Search Tool (BLASTp) in National Center for Biotechnology Infor-
mation (NCBI) database. To find homologous sequences in other 
CoVs, SARS-CoV-2 was excluded during this BLASTp. Top 4 hits in 
BLAST were taken for characterization. Afterward, E protein of 
SARS-CoV-1 GD01 (accession: AAP51230.1) was also included. 
The protein sequences were uploaded in ProtParam, Pfam, and 

Table 1. Transmembrane positions of amino acids, theoretical pI (isoelectric point), instability index, aliphatic index, and GRAVY of E proteins 
in several coronaviruses related to SARS-CoV-2

Serial No. Virus NCBI accession 
No. for E protein No. of AA’s Outside Inside Theoretical pI Instability

Index
Aliphatic

Index GRAVY

1 Bat SARS-like coronavirus AVP78033.1 75 1‒11 35‒75 8.57 38.68 144 1.128
2 SARS-related coronavirus APO40581.1 76 1‒11 35‒76 7.69 35.26 144.74 1.129
3 Coronavirus BtRl-BetaCoV/SC2018 QDF43816.1 76 1‒11 35‒76 6.01 31.47 147.24 1.145
4 Rhinolophus affinis coronavirus AHX37560.1 76 1‒11 35‒76 6.01 33.02 145.92 1.176
5 SARS-CoV-2 YP_009724392.1 75 1‒11 35‒76 8.57 38.68 144 1.128
6 SARS coronavirus GD01 AAP51230.1 76 1‒11 35‒75 6.01 30.48 142.11 1.111
Average - - 75.67 - - 7.12 33.782 144.67 1.14

GRAVY, grand average of hydropathicity; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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THMM to analyze their physicochemical properties, domains, and 
transmembrane helices [30-32]. Their phylogenetic characteriza-
tion was conducted by CLC Drug Discovery Workbench 3.0 using 
default parameters (https://digitalinsights.qiagen.com).  

Three-dimensional structure generations of E proteins  
E proteins of SARS-CoV-1 and SARS-CoV-2 were generated via Ro-
betta (https://robetta.bakerlab.org) [33]. The structures were re-
fined with three-dimensional refine and Galaxy Refine [34,35]. The 
qualities of the generated structures were assessed using SWISS 
structure assessment [36]. 

Pharmacokinetic property exploration of the ligands and 
preparation for molecular docking 
The molecules were selected after going through literature [27,28]. 
The cannonical smiles of 5-(N,N-hexamethylene) amiloride or 
HMA and 3A5NP2C were uploaded in SWISS-ADME for explor-
ing the pharmacokinetic properties (absorption, distribution, me-
tabolism, excretion) [37]. The canonical SMILES (Simplified mo-
lecular-input line-entry system) were collected from PubChem data-
base and transferred into protein data bank file via Online SMILES 
Translator and Structure File Generator (https://cactus.nci.nih.
gov/translate/) [38]. 

Molecular docking and dynamic simulations 
The selected ligands went under blind molecular docking simula-
tion against SARS-CoV-1 and SARS-CoV-2 E proteins via AutoDo-
ck tools 1.5.6 [39]. The ligand-receptor interactions between 
drug-receptor complexes were visualized by BIOVIA Discovery 
Studio (http://www.discover.3ds.com) and PyMOL Molecular 
Graphics System, Version 2.3.3 Schrödinger, LLC [40] and UCSF 
Chimera [41]. The dynamics and stability of SARS-CoV-1 and 
SARS-CoV-2 E proteins with amiloride analogs bound complexes 
were compared by carrying out MD simulations. For MD simula-
tions, the drug-bound complexes were embedded in a lipid bilayer 
membrane composed of 36% phosphatidylcholine, 21% phospha-
tidylethanolamine, 21% cholesterol, 6% phosphatidylserine. This 
lipid bilayer mimics the lipid composition of golgi complex [42]. 
The SARS-CoV-1 VPs generally target golgi apparatus [43]. The 
total system consisted of about 120,000 atoms in an orthorhombic 
simulation cell with a free KCl concentration of 150 mM. Equilibri-
um MD simulations were performed after energy minimization 
and 1,000 ns of equilibration with position restraints. The protein, 
water, and lipid components were energy minimized using 
Charmm-Gui Bilayer Builder [44] and Gromacs 2019.2 [45,46]. 
All simulations were carried out under periodic boundary condi-

tions at constant temperature (T =  310°K) and pressure (P =  1 
bar). Then the root mean square deviation (RMSD) and Root 
Mean Square Fluctuation (RMSF) of C-α carbon from wild type 
apo-SARS-CoV-1 E and apo-SARS-CoV-2 E with ligand bound 
complexes were analyzed by g_rms, g_rmsf tools. 

Results 

SARS-CoV-2 E protein contains relatively higher instability 
index 
According to NCBI BLASTp, SARS-CoV-1 and SARS-CoV-2 E 
proteins share 93.42% sequence identity. The selected CoV E pro-
tein contains nearly same numbers of amino acids outside and in-
side of the transmembrane. Their grand average of hydropathicity 
values are not significantly diverse. However, SARS-CoV-2 E has a 
higher theoretical pI (isoelectric point) and instability index than 
average value. Only Bat SARS-like coronavirus has this type of 
properties. 

All of the E proteins have Non-structural protein NS3/Small en-
velope protein E domain (Fig. 1). Some insignificant domains 
such as Ellis van Creveld protein 2 like protein and FAM163 fami-
ly were found in SARS-CoV-2 E. This insignificant FAM163 fami-
ly domain was absent in SARS-CoV-1 E (Supplementary Data 1). 

SARS-CoV-2 E protein demonstrated higher binding affinity 
for the ligands than SARS-CoV-1 E 
The E proteins of SARS-CoV-1 and SARS-CoV-2 went under ho-
mology modeling and their structures were refined. More than 
97% amino acids were in favored region of Ramachandran plot. 
Details about the structural qualities are given in Supplementary 
Data 2. To target SARS-CoV-2 E, anticancer amiloride analogs, i.e., 
HMA and 3A5NP2C were used in this study (Fig. 2). Their physi-
cochemical and pharmacokinetic properties are given in (Table 2) 
and Supplementary Data 2. They have similar bioavailability. 
HMA might inhibit CYP1A2 and CYP2C19. However, this char-
acteristic was absent in 3A5NP2C. SARS-CoV-1 E demonstrated 
–5.5 kcal/mol and –5.8 kcal/mol binding affinity scores with 
HMA and 3A5NP2C respectively. Whereas HMA and 3A5NP2C 
interacted with SARS-CoV-2 E with –7.3 kcal/mol and –7.1 kcal/
mol binding affinity scores, respectively (Table 2). 

Only Phe 4 of SARS-CoV-1 E interacted with both HMA and 
3A5NP2C. Whereas six common residues of SARS-CoV-2 protein 
E Phe 4, Asn 66, Leu 12, Tyr 57, Val 62, Lys 63 participated in li-
gand-receptor interactions (Fig. 3). Moreover, HMA and 3A5N-
P2C interacted via H-bonds with SARS-CoV-2 E which was not 
observed in SARS-CoV-1 E. The pyrazine ring, which is essential 
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for the structure activity relationship of amiloride, showed various 
types of interactions. The extra pyrimidine group of 3A5NP2C 
engaged more amino acids in the receptors. 

HMA and 3A5NP2C altered the wild type E proteins structures 
The ligand-receptor complexes went under 1 ms simulation or 
1,000 ns MD simulation. The ligand bound and ligand-free E pro-
teins deviated in same pattern for less than 100 ns and after that 
their RMSD values were different (Fig. 4). Ligand-receptor com-
plexes also showed altered mobility, especially in the cytoplasmic, 
transmembrane, and non-cytoplasmic regions. SARS-CoV-2-E-
3A5NP2C complex also demonstrated different RMSD value at 
100ns whereas SARS-CoV-2-E–HMA showed less deviations. On 
the other hand, HMA reduced more fluctuation than 3A5NP2C 
in these domains of SARS-CoV-2 E proteins. During the simula-
tion, the RMSD of SARS-CoV-1 E (black line) and SARS-CoV-1-
E-HMA (green line) did not show equal overlapping value after 
few seconds. This indicated that the bonded drug altered the wild 
type conformations hence it could not execute the IC activities 
[22]. Similar patterns were also observed between SARS-CoV-2 E 

Fig. 2. Selected compound for E protein inhibition. (A) 5-(N,N-
hexamethylene) amiloride is a well-known coronavirus viroporin 
inhibitor. (B) Structurally similar 3-amino-5-(azepan-1-yl)-N-
(diaminomethylidene)-6-pyrimidin-5-ylpyrazine-2-carboxamide 
(3A5NP2C). This small molecule has anticancer activity. E, envelope.

BA

Fig. 1. E protein is highly conserved among SARS-CoV-2 and SARS-CoV-1. Only black regions (underlined with green bars) are variable. 
All of the E proteins have NS3/small envelope protein E domain (NS3_envE). According to the phylogenetic tree, SARS-CoV-2 E protein is 
mostly closed to bat SARS-like coronavirus E protein. E, envelope; SARS-CoV, severe acute respiratory syndrome coronavirus.
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Table 2. Major physiochemical and pharmacokinetic characteristics of the selected anticancer amiloride analogs

Characteristic 5-(N,N-Hexamethylene) amiloride (HMA) 3-Amino-5-(azepan-1-yl)-N-(diaminomethylidene)-6-py-
rimidin-5-ylpyrazine-2-carboxamide (3A5NP2C)

Molecular weight 311.77 355.4
H-bond acceptors 3 4
H-bond donors 4 6
GI absorption High Low
BBB permeant No No
Inhibitory substrate of: CYP1A2, CYP2C19 No data available
Bioavailability score 0.55 0.55
Binding affinity score (SARS-CoV-1 E) (kcal/mol) –5.5 –5.8
Binding affinity score (SARS-CoV-2 E) (kcal/mol) –7.3 –7.1

GI, gastrointestinal absorption; BBB, blood brain barrier; SARS-CoV, severe acute respiratory syndrome coronavirus; E, envelope protein.

Fig. 3. Interactions between 3A5NP2C with SARS-CoV-1 E (A) and SARS-CoV-2 E (B). 5-(N,N-Hexamethylene) amiloride interactions 
with SARS-CoV-1 E (C) and SARS-CoV-2 E viroporins (D). 3A5NP2C, 3-amino-5-(azepan-1-yl)-N-(diaminomethylidene)-6-pyrimidin-5-
ylpyrazine-2-carboxamide; E, envelope; SARS-CoV, severe acute respiratory syndrome coronavirus.

A

C

B

D

and drug bound SARS-CoV-2 E. RMSF analysis showed that these 
compounds reduced the mobility of N and C terminal region of 
SARS-CoV-2 E (Fig. 4). 

The schematic representation of the whole study is given in 
Fig. 5. 

Discussion 

VPs are involved in viral assembly and pathogenesis, which pro-
motes ion imbalance within host cells, disrupting cellular pathways 
[11,43,47]. Therefore, impeding their activity by specific drugs of-

Van der Waals
Water hydrogen bond
Conventional hydrogen bond

Interactions
Carbon hytrogen bond
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Fig. 4. Molecular dynamics simulation of amiloride analogs and the receptors. The root mean square deviation (RMSD) (A) and root mean 
square fluctuation (RMSF) (B) of SARS-CoV-1 and 2 E proteins with and without amiloride analogs. SARS-CoV, severe acute respiratory 
syndrome coronavirus; E, envelope. 

Fig. 5. The schematic representation of the whole study. E, envelope; SARS-CoV, severe acute respiratory syndrome coronavirus; ERGIC, 
Endoplasmic Reticulum Golgi Apparatus Intermediate Compartment.
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fers promising antiviral therapeutics [6,48]. Coronaviruses, in-
cluding SARS-CoV-1, express small envelope (E) protein that 
forms VPs. These VPs act as cation-selective ion channels in lipid 
bilayers that are able to pump Na+ and K+ ions [49]. The trans-
membrane α-helical domain of E forming multimeric α-helical 
bundle is responsible for the IC activity [50]. Similar to SARS-
CoV-1, SARS-CoV-2 also encodes VP forming E protein [51,52]. 
This E protein is 93.42% identical with SARS-CoV-1 E. SARS-
CoV-2 E has a conserved NS3/Small envelope protein E domain 
(NS3_envE) that triggers inflammation in host cells (Fig. 1) [13]. 

Previous reports showed that NHE-1 blocker HMA inhibits 
HCoV-229E and MHV E protein IC conductance in lipid bilayers 
[21]. Functions of SARS-CoV-1 E got significantly reduced by 
HMA in human embryonic kidney 293 cells [22]. Moreover, 
HMA and 3A5NP2C have anticancer properties [27,28]. Accord-
ing to SWISS-ADME, these molecules are impenetrable through 
blood brain barrier and can circulate in the body with 0.55 bio-
availability score. 3A5NP2C drug compound has lower gastroin-
testinal absorption than HMA. However, HMA might act as an in-
hibitory substrate of CYP1A2 and CYP2C19 enzyme. Specific 
modification in the side chain of amiloride analogs might make 
the compound a potential broad spectrum anti-microbial com-
pound with safer ADMET properties and efficacy. Hence, further 
studies may contribute to the structural modification of these ana-
logs devising a safer and more effective antiviral [53].  

In this study, we have found that the structural characteristics of 
HMA and similar compound 3A5NP2C exhibited more binding 
affinity score with SARS-CoV-2 E than SARS-CoV-1 E. Phe 4 of 
SARS-CoV-1 E was the common interacted residue for both HMA 
and 3A5NP2C whereas SARS-CoV-2 E interacted via Phe 4, Asn 
66, Leu 12, Tyr 57, Val 62, Lys 63. This indicated that these ligands 
could bind to both inside (amino acid number: 1–11), outside 
(amino acid number: 35–75) and within transmembrane helix 
(amino acid number: 12–34) regions of SARS-CoV-2 E (Table 1). 

The E proteins and drug-receptor complexes were placed in a 
Golgi lipid bilayer model for MD simulations. SARS-CoV-2 E 
showed higher mobility and deviations in bilayer than SARS-CoV-1 
E. Especially the outside N and C terminal regions of the protein 
were more mobile than SARS-CoV-1 E. Since, SARS-CoV-2 can 
replicate 3 times faster than SARS-CoV-1; hence, it can release/shed 
more viruses from the host cells [54]. Whether this enhanced mo-
bility and instability of SARS-CoV-2 E are contributing in higher vi-
ral release is further needed to be explored (Table 1, Fig. 4). Here, 
the SARS-CoV-1 E and SARS-CoV-1-E-HMA complex were run as 
control since HMA can inhibit the VP activities. The differences be-
tween RMSD and RMSF of the ligand-bound and ligand-free 

SARS-CoV-1 E indicated that these compounds interfered with the 
normal physiology of the viral protein. The same patterns were also 
observed for ligand-bound and ligand-free SARS-CoV-2 E proteins. 
The flexibility of the proteins was altered in cytoplasmic, non-cyto-
plasmic and transmembrane regions. These flexibilities are critical 
for viral physiology [43]. MD simulation revealed that this region 
would gain rigidity which strongly supports that the viral physiology 
will be hindered extremely [55]. Hence, these deviations and alter-
ations of the protein E strongly suggest that these amiloride analogs 
will disrupt the cation-selective IC activities. 

Amiloride and HMA are well-studied compounds; therefore, in 
the near future, their antiviral activity against SARS-CoV-2 can be 
evaluated to develop new treatments. However, amiloride has 
some rare adverse effects and side effects. The most dangerous ef-
fects include hyperkalaemia [56]. Therefore, similar to nafamostat 
mesylate, serum potassium values should be monitored carefully 
in COVID-19 patients after the administration of amiloride ana-
logs [57]. Although HMA has a lower K+ sparing diuretic effect 
than amiloride, these drugs might show side effects by hindering 
the general physiology of uPA [27,28]. 

Several amiloride analogs can inhibit the functions of coronavi-
rus VPs. Our study strongly suggests their antiviral activities 
against SARS-CoV-2. Further in vitro screening and in vivo experi-
ments are necessary to consider amiloride analogs as a prospective 
drug against this virus. 
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