• Title/Summary/Keyword: Entry Angle

Search Result 101, Processing Time 0.022 seconds

Stability analysis of an unsaturated slope considering the suction stress (흡입응력을 고려한 불포화 사면의 안정해석법)

  • Song, Young-Suk;Lee, Nam-Woo;Hwang, Woong-Ki;Kim, Tae-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.764-771
    • /
    • 2010
  • The stability analysis method of an unsaturated slope considering the suction stress was performed on the infinite sand slope. During drying and wetting processes, the Soil-Water Characteristics Curve (SWCC) of the sand with the relative density of 75% was measured using the automated SWCC apparatus. Also, the Suction Stress Characteristics Curve (SSCC) was estimated. Based on these results, the stability analysis of an unsaturated infinite slope was carried out considering the slope angle, the weathering zone and the relative change in friction angle as a soil depth. According to the result of slope stability analysis, the safety factors of slope were less than 1 when the slope angles were more than $50^{\circ}$. The safety factors of slope tend to increase with increasing the depth from the ground surface. Especially, the safety factors have a tendency to increase and decrease above near the ground water level due to the suction stress. The maximum safety factor of slope in this analysis was occurred at the Air Entry Value (AEV) of drying process. The influence range of suction stress above the ground water level can be found out and can be defined as the funicular zone which means the metric suction range from the air entry point to the point of residual volumetric water content.

  • PDF

A Study of Dynamic Characteristic Analysis for Hysteresis Motor Using Permeability and Load Angle by Inverse Preisach Model (역 프라이자흐 모델에 의한 투자율과 부하각을 이용한 히스테리시스 전동기의 동적 특성 해석 연구)

  • Kim, Hyeong-Seop;Han, Ji-Hoon;Choi, Dong-Jin;Hong, Sun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.2
    • /
    • pp.262-268
    • /
    • 2019
  • Previous dynamic models of hysteresis motor use an extended induction machine equivalent circuit or somewhat different equivalent circuit with conventional one, which makes unsatisfiable results. In this paper, the hysteresis dynamic characteristics of the motor rotor are analyzed using the inverse Preisach model and the hysteresis motor equivalent circuit considering eddy current effect. The hysteresis loop for the rotor ring is analyzed under full-load voltage source static state. The calculated hysteresis loop is then approximated to an ellipse for simplicity of dynamic computation. The permeability and delay angle of the elliptic loop apply to the dynamic analysis model. As a result, it is possible to dynamically analyze the hysteresis motor according to the applied voltage and the rotor material. With this method, the motor speed, generated torque, load angle, rotor current as well as synchronous entry time, hunting effect can be calculated.

Numerical Experimentations on Flow Impact Phenomena for 2-D Wedge Entry Problem (2차원 쐐기형 구조물 입수 시 발생하는 유체 충격 현상에 대한 수치 실험적 연구)

  • Yum, Duek-Joon;Du, Hun;Kim, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3374-3383
    • /
    • 2011
  • In this study, numerical analyses for slamming impact phenomena have been carried out using a 2-dimensional wedge shaped structure having finite deadrise angles. Fluid is assumed incompressible and entry speed of the structure is kept constant. Geo-reconstruct(or PLIC-VOF) scheme is used for the tracking of the deforming free surface. Numerical analyses are carried out for the deadrise angles of $10^{\circ}$, $20^{\circ}$ and $30^{\circ}$. For each deadrise angle, variations are made for the grid size on the wedge bottom and for the entry speed. The magnitude and the location of impact pressure and the total drag force, which is the summation of pressure distributed at the bottom of the structure, are analyzed. Results of the analyses are compared with the results of the Dobrovol'skaya similarity solutions, the asymptotic solution based on the Wagner method and the solution of Boundary Element Method(BEM).

Determination of Weaving Section at Highway Collector-Distrivutor (집산로가 설치된 고속도로 위빙구간 유출입부 설계기준 제시)

  • Oh, Jaechul;Kim, Yoon Mi;Lee, Hyung Mu;Ha, Tae Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.879-885
    • /
    • 2018
  • The highway weaving section is a point where there is a conflict caused by entry and exit vehicles. In order to minimize the impact on the main line, an accumulation line should be installed. The design speed of the collecting part is 50 km/h, but the actual driver does not have proper deceleration according to the design speed. In this study, considering the driving behaviors, the design specification, and the driver 's viewing angle, the appropriate separation distance for safe entry and exit of collecting, connecting, and collecting roads was examined. As a result of the analysis, it is found that a distance of 60m is required from the point where the merging starts. The results of this study are expected to contribute to the improvement of driver safety due to the conflict between entry and exit vehicles when applied to the weaving section where collecting roads are installed.

An Analytical Study by Variation of Die and Plug Angle in Drawing Process for the Strength Optimization of Ultra High Pressure Common Rail Fuel Injection Tube Raw Material (초고압 커먼레일 연료분사튜브 원재료 강성 최적화를 위한 인발 공정에서의 Die와 Plug 각도 변경에 따른 해석적 연구)

  • Ahn, Seoyeon;Park, Jungkwon;Kim, Yonggyeom;Won, Jongphil;Kim, Hyunsoo;Kang, Insan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.338-344
    • /
    • 2016
  • The study is actively being performed to increase fuel injection pressure of common rail system among countermeasures to meet the emission regulation strengthen of the Diesel engine. The common rail fuel injection tube in such ultra high pressure common rail system has the weakest structural characteristics against vibration that is generated by fuel injection pressure and pulsation during engine operation and driving. Thus the extreme durability is required for common rail fuel injection tube, and the drawing process is being magnified as the most important technical fact for strength of seamless pipe that is the raw material of common rail tube. In this respect, we analyzed the characteristic of dimension and stress variation of the ultra high pressure common rail fuel injection tube by variation of Die and Plug angle in drawing process. Based on the analysis, we tried to obtain the raw material strength of common rail fuel injection tube for applying to the ultra high pressure common rail system. As a result, Plug angle is more important than entry angle of Die and we could obtain the target dimension and strength of the ultra high pressure common rail fuel injection tube through optimization of Plug angle.

Needle Entry Angle to Prevent Carotid Sheath Injury for Fluoroscopy-Guided Cervical Transforaminal Epidural Steroid Injection

  • Choi, Jaewoo;Ha, Doo Hoe;Kwon, Shinyoung;Jung, Youngsu;Yu, Junghoon;Kim, MinYoung;Min, Kyunghoon
    • Annals of Rehabilitation Medicine
    • /
    • v.42 no.6
    • /
    • pp.814-821
    • /
    • 2018
  • Objective To suggest rotation angles of fluoroscopy that can bypass the carotid sheath according to vertebral levels for cervical transforaminal epidural steroid injection (TFESI). Methods Patients who underwent cervical spine magnetic resonance imaging (MRI) from January 2009 to October 2017 were analyzed. In axial sections of cervical spine MRI, three angles to the vertical line (${\alpha}$, angle not to insult carotid sheath; ${\beta}$, angle for the conventional TFESI; ${\gamma}$, angle not to penetrate carotid artery) were measured. Results Alpha (${\alpha}$) angles tended to increase for upper cervical levels ($53.3^{\circ}$ in C6-7, $65.2^{\circ}$ in C5-6, $75.3^{\circ}$ in C4-5, $82.3^{\circ}$ in C3-4). Beta (${\beta}$) angles for conventional TFESI showed a constant value of $45^{\circ}$ to $47^{\circ}$ ($47.5^{\circ}$ in C6-7, $47.4^{\circ}$ in C5-6, $45.7^{\circ}$ in C4-5, $45.0^{\circ}$ in C3-4). Gamma (${\gamma}$) angles increased at higher cervical levels as did ${\alpha}$ angles ($25.2^{\circ}$ in C6-7, $33.6^{\circ}$ in C5-6, $43.0^{\circ}$ in C4-5, $56.2^{\circ}$ in C3-4). Conclusion The risk of causing injury by penetrating major vessels in the carotid sheath tends to increase at upper cervical levels. Therefore, prior to cervical TFESI, measuring the angle is necessary to avoid carotid vessels in the axial section of CT or MRI, thus contributing to a safer procedure.

AN EVALUATION OF ANGLES BETWEEN THE ALVEOLAR CREST BONE AND THE IMPLANT EFFECT ON THE IMPLANT CRESTAL AREA INDUCED STRESSES USING A FINITE ELEMENT METHOD (임플랜트와 경부골이 이루는 각도가 치경부 응력 발생에 미치는 영향)

  • Cho, Sung-Bum;Lee, Kyu-Bok;Jo, Kwang-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.2
    • /
    • pp.274-282
    • /
    • 2007
  • Statement of problem: Main consideration was given to the stresses at the site of implant entry into the cortical bone at the alveolar crest. As a suspectible factor affecting the occurrence of stress concentrations, the contact angle between the implant and the alveolar crest bone was addressed. Purpose: The purpose of this study is to evaluate angles between the alveolar crest bone and the implant effect on the implant crestal area induced stresses using a finite element method. Material and methods: Cylindrically shaped, standard size ITI implants entering into alveolar crest with four different contact angles of 0, 15, 30, and 45 deg. with the long axis of the implant were axisymmetrically modelled. Alterations of stresses around the implants were computed and compared at the cervical cortical bone. Results and conclusion: The results demonstrated that regardless of the difference of the implant/alveolar crest bone contact angles, stress concentration occurred at the cervical bone and the angle differences led to insignificant variations in stress level.

Unsaturated shear strength characteristics of Nak-dong River silty-sand (낙동강 실트질 모래의 불포화 전단강도특성)

  • Cha, Bong-Geun;Kim, Young-Su;Park, Sung-Sik;Shin, Ji-Seop
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.53-60
    • /
    • 2010
  • The natural soils are classified in saturated soils and unsaturated soils according to level of ground water but the research for only saturated soils has been conducted by this time. However, there are many proble.ms which are not solved by using the concept and principle of saturated soils on the natural soils. In fact, it is known that unsaturated soils represent the behavior characteristic unlike completely saturated soils because of the adhesion under the influence of negative pore water pressure, the high angle of friction and the low water permeability by the air entry. So it needs to conduct the various researches on insufficient unsaturated soils. In this paper, unsaturated triaxial compressive tests are conducted in order to do research on shear strength characteristic on sands and silty sands of Nakdong river. As a result of the tests, the cohesion is increased in non-linear type according to the change of the matric suction, but the angle of internal friction is not changed much.

  • PDF

Effect on Ice Slurry Flowing in the Elbow of Various Angle (다양한 각도의 곡관 내에서 아이스슬러리의 유동에 따른 영향)

  • 김규목;박기원;권일욱
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.142-149
    • /
    • 2004
  • Recently, the government introduced the thermal storage system for reducing the electric power load. Especially, the ice slurry type has gained lots of interest due to its good heat transfer and flowing characteristics. This study was peformed to understand the effects of transporting ice slurry through elbows of various angle. Propylene glycol water solution was used and about 2 mm ice particles were circulated. The experiments were carried out under various conditions, such as concentration and velocity of water solution ranging between 0∼20 wt%, 1.5∼2.5 m/s, respectively. And elbows with 4 different angles of 30$^{\circ}$, 45$^{\circ}$, 90$^{\circ}$, 180$^{\circ}$. The differential pressure and IPF (ice packing factor) between the pipe entry and exit were measured. The tendency of pressure loss and outlet IPF in elbow is that the pressure loss was reduced as concentration and flow velocity of water solution is increased, and low value appeared at 10 wt% and 2.5 m/s. The variation of outlet IPF was compared with the inlet IPF in the range of $\pm$20%.

Variation of Pressure Loss and IPF Flowing Ice Slurry in Straight Tube Inclined to Various Angle (다양한 각도로 기울어진 직관내에서 아이스슬러리 유동시 압력손실과 IPF 변화)

  • Kim Kyu-Mok;Park Ki-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1028-1034
    • /
    • 2004
  • Recently, the ice storage system using ice slurry has been used increasingly since it has been introduced where the rapid cooling load change is required. Because it overcomes a decrease of the melting performance and an increase of the thermal resistance on the ice layer in static ice thermal storage system. This study is performed to understand the effects of transporting ice slurry through horizontal, vertical and inclined tubes ($30^{\circ},\;45^{\circ}$). It used propylene glycol-water solution and ice particles (diameter of about 2 mm) in this experiment. The experiments were carried out under various conditions, with concentration of water solution ranging from 0 to $20wt\%$, and velocity of water solution at the entry ranging from 1.5 to 2.5 m/s. The results were as follows: Regarding the angle of inclined tube, the highest pressure loss was measured for vertical tube and the pressure loss for $45^{\circ},\;30^{\circ}$, horizontal straight tubes were lower successively. The lowest pressure loss in these tubes was measured at velocity of $2.0{\sim}2.5m/s$ and concentration of $10wt\%$. The outlet IPF was likewise stable in these ranges.