DOI QR코드

DOI QR Code

Needle Entry Angle to Prevent Carotid Sheath Injury for Fluoroscopy-Guided Cervical Transforaminal Epidural Steroid Injection

  • Choi, Jaewoo (Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine) ;
  • Ha, Doo Hoe (Department of Radiology, CHA Bundang Medical Center, CHA University School of Medicine) ;
  • Kwon, Shinyoung (Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine) ;
  • Jung, Youngsu (Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine) ;
  • Yu, Junghoon (Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine) ;
  • Kim, MinYoung (Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine) ;
  • Min, Kyunghoon (Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine)
  • Received : 2018.06.01
  • Accepted : 2018.07.26
  • Published : 2018.12.31

Abstract

Objective To suggest rotation angles of fluoroscopy that can bypass the carotid sheath according to vertebral levels for cervical transforaminal epidural steroid injection (TFESI). Methods Patients who underwent cervical spine magnetic resonance imaging (MRI) from January 2009 to October 2017 were analyzed. In axial sections of cervical spine MRI, three angles to the vertical line (${\alpha}$, angle not to insult carotid sheath; ${\beta}$, angle for the conventional TFESI; ${\gamma}$, angle not to penetrate carotid artery) were measured. Results Alpha (${\alpha}$) angles tended to increase for upper cervical levels ($53.3^{\circ}$ in C6-7, $65.2^{\circ}$ in C5-6, $75.3^{\circ}$ in C4-5, $82.3^{\circ}$ in C3-4). Beta (${\beta}$) angles for conventional TFESI showed a constant value of $45^{\circ}$ to $47^{\circ}$ ($47.5^{\circ}$ in C6-7, $47.4^{\circ}$ in C5-6, $45.7^{\circ}$ in C4-5, $45.0^{\circ}$ in C3-4). Gamma (${\gamma}$) angles increased at higher cervical levels as did ${\alpha}$ angles ($25.2^{\circ}$ in C6-7, $33.6^{\circ}$ in C5-6, $43.0^{\circ}$ in C4-5, $56.2^{\circ}$ in C3-4). Conclusion The risk of causing injury by penetrating major vessels in the carotid sheath tends to increase at upper cervical levels. Therefore, prior to cervical TFESI, measuring the angle is necessary to avoid carotid vessels in the axial section of CT or MRI, thus contributing to a safer procedure.

Keywords

References

  1. Van Zundert J, Huntoon M, Patijn J, Lataster A, Mekhail N, van Kleef M, et al. 4. Cervical radicular pain. Pain Pract 2010;10:1-17. https://doi.org/10.1111/j.1533-2500.2009.00319.x
  2. Rathmell JP, Aprill C, Bogduk N. Cervical transforaminal injection of steroids. Anesthesiology 2004;100:1595-600. https://doi.org/10.1097/00000542-200406000-00035
  3. Kang JD, Stefanovic-Racic M, McIntyre LA, Georgescu HI, Evans CH. Toward a biochemical understanding of human intervertebral disc degeneration and herniation. Contributions of nitric oxide, interleukins, prostaglandin E2, and matrix metalloproteinases. Spine (Phila Pa 1976) 1997;22:1065-73. https://doi.org/10.1097/00007632-199705150-00003
  4. House LM, Barrette K, Mattie R, McCormick ZL. Cervical Epidural steroid injection: techniques and evidence. Phys Med Rehabil Clin N Am 2018;29:1-17. https://doi.org/10.1016/j.pmr.2017.08.001
  5. Diwan S, Manchikanti L, Benyamin RM, Bryce DA, Geffert S, Hameed H, et al. Effectiveness of cervical epidural injections in the management of chronic neck and upper extremity pain. Pain Physician. 2012;15:E405-34.
  6. Engel A, King W, MacVicar J; Standards Division of the International Spine Intervention Society. The effectiveness and risks of fluoroscopically guided cervical transforaminal injections of steroids: a systematic review with comprehensive analysis of the published data. Pain Med 2014;15:386-402. https://doi.org/10.1111/pme.12304
  7. El-Yahchouchi CA, Plastaras CT, Maus TP, Carr CM, McCormick ZL, Geske JR, et al. Adverse event rates associated with transforaminal and interlaminar epidural steroid injections: a multi-institutional study. Pain Med 2016;17:239-49.
  8. Huston CW. Cervical epidural steroid injections in the management of cervical radiculitis: interlaminar versus transforaminal: a review. Curr Rev Musculoskelet Med 2009;2:30-42. https://doi.org/10.1007/s12178-008-9041-4
  9. Manchikanti L, Falco FJ, Benyamin RM, Gharibo CG, Candido KD, Hirsch JA. Epidural steroid injections safety recommendations by the Multi-Society Pain Workgroup (MPW): more regulations without evidence or clarification. Pain Physician 2014;17:E575-88.
  10. Cohen SP, Bicket MC, Jamison D, Wilkinson I, Rathmell JP. Epidural steroids: a comprehensive, evidencebased review. Reg Anesth Pain Med 2013;38:175-200. https://doi.org/10.1097/AAP.0b013e31828ea086
  11. Stojanovic MP, Vu TN, Caneris O, Slezak J, Cohen SP, Sang CN. The role of fluoroscopy in cervical epidural steroid injections: an analysis of contrast dispersal patterns. Spine (Phila Pa 1976) 2002;27:509-14. https://doi.org/10.1097/00007632-200203010-00011
  12. Lee JH, Lee SH. Comparison of clinical efficacy between interlaminar and transforaminal epidural injection in patients with axial pain due to cervical disc herniation. Medicine (Baltimore) 2016;95:e2568. https://doi.org/10.1097/MD.0000000000002568
  13. Scanlon GC, Moeller-Bertram T, Romanowsky SM, Wallace MS. Cervical transforaminal epidural steroid injections: more dangerous than we think? Spine (Phila Pa 1976) 2007;32:1249-56. https://doi.org/10.1097/BRS.0b013e318053ec50
  14. Schneider BJ, Maybin S, Sturos E. Safety and complications of cervical epidural steroid injections. Phys Med Rehabil Clin N Am 2018;29:155-69. https://doi.org/10.1016/j.pmr.2017.08.012
  15. Strub WM, Brown TA, Ying J, Hoffmann M, Ernst RJ, Bulas RV. Translaminar cervical epidural steroid injection: short-term results and factors influencing outcome. J Vasc Interv Radiol 2007;18:1151-5. https://doi.org/10.1016/j.jvir.2007.06.011
  16. Furman MB, Berkwits L, Cohen I, Goodman B, Kirschner J, Lee TS. et al, Atlas of image-guided spinal procedures. 2nd ed. Philadelphia: Elsevier; 2018. p. 243-9.
  17. Chen B, Rispoli L, Stitik TP, Foye PM, Georgy JS. Optimal needle entry angle for cervical transforaminal epidural injections. Pain Physician 2014;17:139-44.
  18. Dawley JD, Moeller-Bertram T, Wallace MS, Patel PM. Intra-arterial injection in the rat brain: evaluation of steroids used for transforaminal epidurals. Spine (Phila Pa 1976) 2009;34:1638-43. https://doi.org/10.1097/BRS.0b013e3181ac0018
  19. Schievink WI. Spontaneous dissection of the carotid and vertebral arteries. N Engl J Med 2001;344:898-906. https://doi.org/10.1056/NEJM200103223441206
  20. Silbert PL, Mokri B, Schievink WI. Headache and neck pain in spontaneous internal carotid and vertebral artery dissections. Neurology 1995;45:1517-22. https://doi.org/10.1212/WNL.45.8.1517
  21. Biousse V, D'Anglejan-Chatillon J, Massiou H, Bousser MG. Head pain in non-traumatic carotid artery dissection: a series of 65 patients. Cephalalgia 1994;14:33-6. https://doi.org/10.1046/j.1468-2982.1994.1401033.x
  22. Biousse V, D'Anglejan-Chatillon J, Touboul PJ, Amarenco P, Bousser MG. Time course of symptoms in extracranial carotid artery dissections: a series of 80 patients. Stroke 1995;26:235-9. https://doi.org/10.1161/01.STR.26.2.235
  23. Stewart HD, Quinnell RC, Dann N. Epidurography in the management of sciatica. Br J Rheumatol 1987;26:424-9. https://doi.org/10.1093/rheumatology/26.6.424
  24. Fitzgerald RT, Bartynski WS, Collins HR. Vertebral artery position in the setting of cervical degenerative disease: implications for selective cervical transforaminal epidural injections. Interv Neuroradiol 2013;19:425-31. https://doi.org/10.1177/159101991301900404
  25. Kim HJ, Nemani VM, Piyaskulkaew C, Vargas SR, Riew KD. Cervical radiculopathy: incidence and treatment of 1,420 consecutive cases. Asian Spine J 2016;10:231-7. https://doi.org/10.4184/asj.2016.10.2.231
  26. Wilbourn AJ, Aminoff MJ. AAEM minimonograph 32: the electrodiagnostic examination in patients with radiculopathies. American Association of Electrodiagnostic Medicine. Muscle Nerve 1998;21:1612-31. https://doi.org/10.1002/(SICI)1097-4598(199812)21:12<1612::AID-MUS2>3.0.CO;2-0
  27. Carette S, Fehlings MG. Clinical practice: cervical radiculopathy. N Engl J Med 2005;353:392-9. https://doi.org/10.1056/NEJMcp043887
  28. Karm MH, Park JY, Kim DH, Cho HS, Lee JY, Kwon K, et al. New optimal needle entry angle for cervical transforaminal epidural steroid injections: a retrospective study. Int J Med Sci 2017;14:376-81. https://doi.org/10.7150/ijms.17112
  29. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33:159-74. https://doi.org/10.2307/2529310
  30. Batzdorf U, Batzdorff A. Analysis of cervical spine curvature in patients with cervical spondylosis. Neurosurgery 1988;22:827-36. https://doi.org/10.1227/00006123-198805000-00004
  31. Lo A, Oehley M, Bartlett A, Adams D, Blyth P, Al-Ali S. Anatomical variations of the common carotid artery bifurcation. ANZ J Surg 2006;76:970-2. https://doi.org/10.1111/j.1445-2197.2006.03913.x
  32. Shoja MM, Ardalan MR, Tubbs RS, Loukas M, Vahedinia S, Jabbary R, et al. The relationship between the internal jugular vein and common carotid artery in the carotid sheath: the effects of age, gender and side. Ann Anat 2008;190:339-43. https://doi.org/10.1016/j.aanat.2008.04.002
  33. Bouthillier A, van Loveren HR, Keller JT. Segments of the internal carotid artery: a new classification. Neurosurgery 1996;38:425-33.
  34. Gordon AC, Saliken JC, Johns D, Owen R, Gray RR. US-guided puncture of the internal jugular vein: complications and anatomic considerations. J Vasc Interv Radiol 1998;9:333-8.
  35. Nishio I. Cervical transforaminal epidural steroid injections: a proposal for optimizing the preprocedural evaluation with available imaging. Reg Anesth Pain Med 2014;39:546-9. https://doi.org/10.1097/AAP.0000000000000164