• Title/Summary/Keyword: Enthalpy

Search Result 984, Processing Time 0.025 seconds

Numerical Analysis of Icing and Condensation Mechanism sing Enthalpy Method (엔탈피방법을 이용한 결빙 및 응축 메커니즘 해석)

  • Kim, S.H.;Heo, M.W.;Park, W.G.;Jung, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2901-2906
    • /
    • 2007
  • A solver for icing and condensation of water has been developed. The phase change process was solved by the enthalpy method. For the code validation, the temperature and the phase change from water to ice of the driven cavity were calculated. Also, the melting process of the frost on the windshield glass of an automobile has been simulated. The calculation showed a good agreement with analytical solution and other numerical results. Using the present validated code, the condensation of water vapor has been first tried. The computed results provided some physical features of condensation phenomena even though experimental data and other numerical data were not available. For future work, it is recommended to throughly investigate the effects of boundary conditions on the solution.

  • PDF

An Asymptotic Analysis of Excess Enthalpy Flame (초과엔탈피 화염의 점근 해석)

  • Lee, Dae Keun
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.135-137
    • /
    • 2014
  • Excess enthalpy flame propagating an porous inert medium, which recirculate exhaust heat to the upstream cold mixture, is theoretically analyzed. Using the activation-energy asymptotics, the flame structure is divided into the thin reaction and the gas-phase preheat zone, as is traditionally done. Ahead and behind of the two, there exist an outer preheat zone, where heat is convectively transferred from solid to gas, and a downstream re-equilibrium zone, where thermal equilibrium between phases is established. Asymptotic solutions of species and energy equations in each zone are obtained and then matched to each other, and finally the mass burning rate is obtained as a function of the flame propagation velocity with respect to the solid phase and physical properties of gas and solid.

  • PDF

Numerical Analysis on Melting and Solidification of Pure Metals with Enthalpy-Porosity Model

  • Kim, Sin;Chung, Bun-Jin;Kim, Min-Chan
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.99-105
    • /
    • 2002
  • A finite volume numerical approach is developed and used to simulate convection-dominated melting and solidification problems. The present approach is based on the enthalpy-porosity method that is traditionally used to track the motion of the liquid-solid front and to obtain the temperature and velocity profiles in the liquid-phase. The enthalpy-porosity model treats the solid-phase as the porosity in all computational cells that are located on the solid-liquid interfacial boundary. Concerning the computational cells that are fully located in the solid side of the interfacial boundary, the zero value of the porosity severely suppresses the velocity vector to practically a non-existent value that could be set equal to zero. A comparative analysis with the previous numerical approaches is performed to demonstrate the improved features of the presented model. Results of a melting and solidification experiments are also used to assess and evaluate the performance of the model.

Fixed-Grid Simulation of Convection-Dominated Melting in a Rectangular Cavity

  • Wongee Chun;Kim, Sin;Kim, Min-Chan
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.796-803
    • /
    • 2001
  • Numerical solutions for the convection-dominated melting in a rectangular cavity are presented. The enthalpy-porosity model is employed as the mathematical model. This model is applied in conjunction with the EIT method to detect boundary movement in a phase changing environment. The absorption and evolution of latent heat during the phase change is dealt with by the enthalpy-based energy equation. This seems to be more efficient than resolving the temperature-based energy equation. The velocity switch-off, which is required when solid changes into liquid, is modeled by the porous medium assumption. For efficiency and simplicity of the solutions procedure, this paper proposes a simple algorithm, which iterates the temperature and the liquid fraction of the cells comprising the front layer. The numerical results agree reasonably well with the experimental data and other previous works using the transformed-grid system.

  • PDF

Application of Combustion in Porous Inert Medium to Thermophotovoltaic Generation of Electricity and Excess Enthalpy Combustion Similarity to both Single and Multi-channels (다공체 내 연소의 열광전 발전에의 적용과 단일, 다중채널 및 다공체 내 초과 엔탈피 연소의 상사성)

  • Lee, Dae Keun
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.171-174
    • /
    • 2012
  • Thermophotovoltaics is the direct energy conversion technology from thermal to electric (voltaic) energy via photon radiation, without any thermodynamic cycle. It is, in general, accomplished by immersing solid body in high temperature heat source (e.g. combustion field), in order to achieve high intensity irradiation, and by receiving the radiation thereof on photovoltaic cells. In this paper, advantages of combustion in porous inert medium in applying to the thermophotovoltaics are discussed in a view of its excess enthalpy features. In addition, the similarities of flame behaviors in porous inert medium to both in single and multi-channels are described.

  • PDF

An Approach to Alleviate Cancellation Problem of Temperature Preconditioned Navier-Stokes Equations (온도예조건화 나비어스톡스 방정식의 계산오차 문제 완화 방법 연구)

  • Lee, Sang-Hyeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.1
    • /
    • pp.11-19
    • /
    • 2010
  • An approach to reduce cancellation errors of the temperature preconditioned Navier-Stokes equations is proposed. This approach is also applied to the conventional preconditioning methods. Adiabatic laminar viscous flows around a circular cylinder are calculated at different Mach numbers. It is shown that a redefinition of total enthalpy for reducing magnitude of the enthalpy remarkably alleviates cancellation problems of the temperature preconditioning.

A Study on Enthalpy Extraction Rate and Isentropic Efficiency of the Disk Type Generator using a Shock Tube (충격파관을 이용한 DISK형 MHD발전기의 엔탈피추출율과 단열효율에 관한 연구)

  • Bae, C.O.;Kim, Y.S.;Park, Y.S.;Shin, S.M.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1981-1983
    • /
    • 1998
  • The principle of the MHD generation is based on Faraday's law of induction that a eletromotive force(u ${\times}$ B) is generated when the working gas of velocity u flows a channel in which magnetic field of strength(B) exists. In MHD power generation system, enthalpy of the working gas is converted to electric power directly through expansion in generator channel. It means that electric power can be generated without moving mechanical linkage such as turbine blades. There are two types in the MHD generator; linear type Faraday and disk type hall generator. Disk type hall generator is the main target of this paper. Isentropic efficiency and enthalpy extraction rate of disk type shock tube driven hall generator is discussed here.

  • PDF

Numerical Analysis by the Enthalpy Method in the Phase Change Process (엔탈피 방법을 이용한 상변화 과정에 대한 수치해석)

  • Kwon, K.S.;Son, B.J.;Yeo, M.S.;Yoon, S.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.2
    • /
    • pp.67-77
    • /
    • 1994
  • In this study, one-dimensional Stefan problem with air-gap resistance in the rectangular mold is considered and the thermal characteristics are examined by using the enthalpy-based simple implicit finite-difference scheme. The enthalpy and temperature are nondimensionalized to obtain general solutions. The temperature distribution and the locations of solidus and liquidus line are obtained and the effects of major parameters on the thermal characteristics are investigated.

  • PDF

A Study on Improvement of Performance for Perforated Type Total HEX Element (다공형 유로를 적용한 전열교환기 소자의 성능향상에 관한 연구)

  • Kwak, Kyung-Min;Bai, Cheol-Ho;Kim, Jee-Yong;Chu, Euy-Sun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.7
    • /
    • pp.529-536
    • /
    • 2007
  • The perforated type element for a heat recovery ventilation system has been studied to improve the performance. Four holes of diameter of 6mm are punched out for each flow channel to break the boundary layer development and increase the turbulence. KS cooling and heating conditions and test procedures are applied for study. The efficiencies are compared to those of the typical element with smooth surface. For cooling operations, the temperature, latent and enthalpy efficiencies increase 2.5%, 18% and 8%, respectively. For heating operations, the temperature, latent and enthalpy efficiencies increase 3%, 5% and 3.2%, respectively.

Development of Combustor for Combustible Hazardous Gas (가연성 유해가스 처리를 위한 연소기 개발)

  • 전영남;채종성;김미환
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.479-485
    • /
    • 1996
  • Volatile organic compounds are air pollutants exhausting from industrial process, evaporation of solvent, and so on. Most of VOCs are the combustible gas of low calorific value as it is diluted by air. The systems burning such a hazardous gas need to increase enthalpy in order to increase flame stability. In this study an incinerator with reciprocating flow in the honeycomb ceramic has been used for the experiment of VOCs control. By the reciprocating flow system, the enthalpy of combustion gas is effectively regenerated into the enthalpy increases of the combustible gas through the honeycomb ceramic, which provides a heat storage. The position of the reaction zone is strongly dependent on the parameters of mixture velocity and time frequency. Flame front is changed to the point where burning velocity is coincided with burning velocity in the honeycomb ceramic. In this system it is important that flame front should be located symmetrically at the center of honeycomb ceramic for the purpose of increasing the reaction rate at one point. Peak temperature becomes higher with decreasing time frequency, at which the flow direction is regularly reversed.

  • PDF