• Title/Summary/Keyword: Engineering scale

Search Result 12,309, Processing Time 0.039 seconds

Numerical prediction analysis of propeller bearing force for full-scale hull-propeller-rudder system

  • Wang, Chao;Sun, Shuai;Li, Liang;Ye, Liyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.589-601
    • /
    • 2016
  • The hybrid grid was adopted and numerical prediction analysis of propeller unsteady bearing force considering free surface was performed for mode and full-scale KCS hull-propeller-rudder system by employing RANS method and VOF model. In order to obtain the propeller velocity under self-propulsion point, firstly, the numerical simulation for self-propulsion test of full-scale ship is carried out. The results show that the scale effect of velocity at self-propulsion point and wake fraction is obvious. Then, the transient two-phase flow calculations are performed for model and full-scale KCS hull-propeller-rudder systems. According to the monitoring data, it is found that the propeller unsteady bearing force is fluctuating periodically over time and full-scale propeller's time-average value is smaller than model-scale's. The frequency spectrum curves are also provided after fast Fourier transform. By analyzing the frequency spectrum data, it is easy to summarize that each component of the propeller bearing force have the same fluctuation frequency and the peak in BFP is maximum. What's more, each component of full-scale bearing force's fluctuation value is bigger than model-scale's except the bending moment coefficient about the Y-axis.

Topology Characteristics and Generation Models of Scale-Free Networks

  • Lee, Kang Won;Lee, Ji Hwan
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.4
    • /
    • pp.205-213
    • /
    • 2021
  • The properties of a scale-free network are little known; its node degree following a power-law distribution is among its few known properties. By selecting real-field scale-free networks from a network dataset and comparing them to other networks, such as random and non-scale-free networks, the topology characteristics of scale-free networks are identified. The assortative coefficient is identified as a key metric of a scale-free network. It is also identified that most scale-free networks have negative assortative coefficients. Traditional generation models of scale-free networks are evaluated based on the identified topology characteristics. Most representative models, such as BA and Holme&Kim, are not effective in generating real-field scale-free networks. A link-rewiring method is suggested that can control the assortative coefficient while preserving the node degree sequence. Our analysis reveals that it is possible to effectively reproduce the assortative coefficients of real-field scale-free networks through link-rewiring.

Fabrication of Nano-Size Specimens for Tensile Test Employing Nano-Indentation Device (나노 인장시험을 위한 압축 시험기용 인장시편 제작에 관한 연구)

  • Lim, Tae Woo;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.911-916
    • /
    • 2015
  • In the nano/micro scale, material properties are dependent on the size-scale of a structure. However, conventional micro-scale tensile tests have limitations to obtain reliable values of nano-scale material properties owing to residual stress and elastic slippage in the gripping/aligning process. The indenter-driven nano-scale tensile test provides prominent advantages simple testing device, high-quality nano-scale metallic specimen with negligible residual stress. In this paper, two-types of specimens (a specimen with multi-testing parts and a specimen with a single-testing part) are discussed. Focused ion beam (FIB) is employed to fabricate a nano-scale specimen from a thin nickel film. Using the specimen with a single-testing part, we obtained a nano-scale stress-strain curve of electroplated nickel film.

A Study of Prevention of Heat Pipe Scale with Copper Alloy Metal (Copper Alloy Metal Fiber를 이용한 Heat pipe 표면의 스케일 제거에 관한 연구)

  • Song, Ju-Yeong;Lee, Sang-Ho;Kim, Eun-Hee;Kim, Jong-Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.434-439
    • /
    • 2009
  • This paper is a new method for prevent. The particulate scale. stero-microscope were used for the scale removal experiment to improve mineralogical characteristics and the reduction of scales in heat pipe. Generally, the scale in the heat pipe consists of calcium carbonate minerals, such as calcite and aragonite which are precipitated by the reaction of Ca and $CO_2$ in the water. Copper alloy metal could eliminate the scale and prevent the production of scale in the heat pipe.

Scale-up of Recombinant Hirudin Production from Saccharomyces cerevisiae

  • Kim, Chul-Ho;K. Jagannadha Rao;Youn, Duk-Joong;Rhee, Sang-Ki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.5
    • /
    • pp.303-305
    • /
    • 2003
  • Scale-up of hirudin production from Saccharomyces cerevisiae from bench-scale to pilot-scale was carried out based on constant volumetric oxygen transfer coefficient (K$\sub$L/a). Fed-batch mode of cultivation using step-wise feeding strategy of galactose was employed for the production of hirudin in a 30-L and a 300-L pilot-scale fermentor. The final hirudin concentrations were achieved 390 mg/L and 286.1 mg/L, and the volumetric productivities were 80.4% and 90.7% with the 30-L and 300-L fermentors, respectively, compared to the productivity of the 5-L bench-scale fermentor.

Spalling of the Oxide Scales Foemed on Stainless Steels During Cooling

  • Saeki, Isao;Ogama, Tetsuro;Furuichi, Ryusaburo;Kikkawa, Shinichi
    • Corrosion Science and Technology
    • /
    • v.2 no.5
    • /
    • pp.225-232
    • /
    • 2003
  • High temperature oxidation of SUS430 and SUS304 stainless steels in 16.7 kPa $O_2$ - 20.3 kPa $H_2O$ - balanced N2 atmosphere at 1273 K was studied focused on the scale spalling during cooling after an isothermal oxidation. Spalling of the oxide scale during cooling occurred only for SUS304 stainless steel. The oxide scale was composed of two layers and they detached at the interface between them. The reason for the spalling could not be explained only by thermal stresses applied to the specimen during heating and cooling. A new mechanism for scale spalling was proposed based on combination of thermal stresses and thermal shock caused by a fast Martensite transformation of substrate metal.

Application of cohesive zone model to large scale circumferential through-wall and 360° surface cracked pipes under static and dynamic loadings

  • Moon, Ji-Hee;Jang, Youn-Young;Huh, Nam-Su;Shim, Do-Jun;Park, Kyoungsoo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.974-987
    • /
    • 2021
  • This paper presents ductile fracture simulation of full-scale cracked pipe for nuclear piping materials using the cohesive zone model (CZM). The main objective of this study is to investigate the applicability of CZM to predict ductile fracture of cracked pipes with various crack shapes and under quasi-static/dynamic loadings. The transferability of the traction-separation (T-S) curve from a small-scale specimen to a full-scale pipe is demonstrated by simulating small- and full-scale tests. T-S curves are calibrated by comparing experimental data of compact tension specimens with finite element analysis results. The calibrated T-S curves are utilized to predict the fracture behavior of cracked pipes. Three types of full-scale pipe tests are considered: pipe with circumferential through-wall crack under quasistatic/dynamic loadings, and with 360° internal surface crack under quasi-static loading. Computational results using the calibrated T-S curves show a good agreement with experimental data, demonstrating the transferability of the T-S curves from small-scale specimen.

Interpolation based Single-path Sub-pixel Convolution for Super-Resolution Multi-Scale Networks

  • Alao, Honnang;Kim, Jin-Sung;Kim, Tae Sung;Oh, Juhyen;Lee, Kyujoong
    • Journal of Multimedia Information System
    • /
    • v.8 no.4
    • /
    • pp.203-210
    • /
    • 2021
  • Deep leaning convolutional neural networks (CNN) have successfully been applied to image super-resolution (SR). Despite their great performances, SR techniques tend to focus on a certain upscale factor when training a particular model. Algorithms for single model multi-scale networks can easily be constructed if images are upscaled prior to input, but sub-pixel convolution upsampling works differently for each scale factor. Recent SR methods employ multi-scale and multi-path learning as a solution. However, this causes unshared parameters and unbalanced parameter distribution across various scale factors. We present a multi-scale single-path upsample module as a solution by exploiting the advantages of sub-pixel convolution and interpolation algorithms. The proposed model employs sub-pixel convolution for the highest scale factor among the learning upscale factors, and then utilize 1-dimension interpolation, compressing the learned features on the channel axis to match the desired output image size. Experiments are performed for the single-path upsample module, and compared to the multi-path upsample module. Based on the experimental results, the proposed algorithm reduces the upsample module's parameters by 24% and presents slightly to better performance compared to the previous algorithm.

Analysis of Electrical Equipment and Work Environment for Domestic Small-Scale Construction Site (국내 소규모 건설현장의 전기설비 및 작업환경 분석)

  • Kim, Doo-Hyun;Hwang, Dong-Kyu;Kim, Sung-Chul;Kang, Shin-Uk;Choi, Sang-Won
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.42-47
    • /
    • 2014
  • This paper is aimed to investigate and analyze of characteristic for electrical equipment and work environment for the small-scale site. In order to investigate and analyze electrical equipment and work environment for preventing electric shock disaster in construction sites, 50 small-scale construction sites and 12 large-scale construction sites are selected. This paper completed site investigations of low-voltage equipment and the portable electric machine and equipment in 12 large-scale construction sites and 50 small-scale construction sites. The findings were about the electric shock environment relevant to the ground-relevant equipment, the panel board, the protection tools, the sockets, the temporary wiring system, the portable and movable electric machines and equipments in small-scale construction sites. Finally, this study analyzed the domestic and foreign relevant standards and regulations and these findings can be utilized as educational data warning electric shock risk caused by electric equipment in small-scale construction site.

A Study on the Manufacturing of High Precision Linear Scale Using He-Ne Laser Interference (He-Ne 레이저의 간섭을 이용한 고정밀 리니어 스케일의 제작에 관한 연구)

  • Han, Eung-Gyo;Jeon, Byeong-Uk;Lee, Myeong-Ho;Park, Du-Won;No, Byeong-Ok;Sakurai, Yoshimasa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.3
    • /
    • pp.82-92
    • /
    • 1991
  • A study on the manufacturing of High Precision Linear Scalr using He-Ne Laser interference Of late, along with the advancement of precision machining technology, the requirement of super precision measurement increases as time goes on, and the accuracy of standard scale which is a basis of precision measurement has been cognized as a criterion of industrial development in a nationl. In this paper, we described on technology by which we could carve scale lines thru optical method under the condition of laboratory by using the coherence of He-Ne two-mode stabilized laser and in turn, put it to practical use as linear scale for the measurement of length. Hence in this research in the case of setting scale interval to 20 ${\mu}m$, we employed super precision scale-carving device associated with Ar laser and acousto optic modulator in lieu of flashing lamp scale-carving device, and we obtained as experimental result superior linear scales carved within the accuracy of ${\pm}$0.3${\mu}m$.

  • PDF