DOI QR코드

DOI QR Code

Application of cohesive zone model to large scale circumferential through-wall and 360° surface cracked pipes under static and dynamic loadings

  • Moon, Ji-Hee (Department of Mechanical System Design Engineering, Seoul National University of Science and Technology) ;
  • Jang, Youn-Young (Department of Mechanical System Design Engineering, Seoul National University of Science and Technology) ;
  • Huh, Nam-Su (Department of Mechanical System Design Engineering, Seoul National University of Science and Technology) ;
  • Shim, Do-Jun (Structural Integrity Associates) ;
  • Park, Kyoungsoo (School of Civil and Environmental Engineering, Yonsei University)
  • Received : 2020.06.04
  • Accepted : 2020.07.30
  • Published : 2021.03.25

Abstract

This paper presents ductile fracture simulation of full-scale cracked pipe for nuclear piping materials using the cohesive zone model (CZM). The main objective of this study is to investigate the applicability of CZM to predict ductile fracture of cracked pipes with various crack shapes and under quasi-static/dynamic loadings. The transferability of the traction-separation (T-S) curve from a small-scale specimen to a full-scale pipe is demonstrated by simulating small- and full-scale tests. T-S curves are calibrated by comparing experimental data of compact tension specimens with finite element analysis results. The calibrated T-S curves are utilized to predict the fracture behavior of cracked pipes. Three types of full-scale pipe tests are considered: pipe with circumferential through-wall crack under quasistatic/dynamic loadings, and with 360° internal surface crack under quasi-static loading. Computational results using the calibrated T-S curves show a good agreement with experimental data, demonstrating the transferability of the T-S curves from small-scale specimen.

Keywords

Acknowledgement

This work was supported by the Nuclear Power Core Technology Development Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20181510102380).

References

  1. A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part Idyield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol. 99 (1977) 2-15. https://doi.org/10.1115/1.3443401
  2. C.C. Chu, A. Needleman, Void nucleation effects in biaxially stretched sheets, J. Eng. Mater. Technol. 102 (1980) 249-256. https://doi.org/10.1115/1.3224807
  3. I. Scheider, W. Brocks, Simulation of cupecone fracture using the cohesive model, Eng. Fract. Mech. 70 (2003) 1943-1961. https://doi.org/10.1016/S0013-7944(03)00133-4
  4. Z. Xue, M.G. Pontin, F.W. Zok, J.W. Hutchinson, Calibration procedures for a computational model of ductile fracture, Eng. Fract. Mech. 77 (2010) 492-509. https://doi.org/10.1016/j.engfracmech.2009.10.007
  5. C.K. Oh, Y.J. Kim, J.H. Baek, Y.P. Kim, W. Kim, A phenomenological model of ductile fracture for API X65 steel, Int. J. Mech. Sci. 49 (2007) 1399-1412. https://doi.org/10.1016/j.ijmecsci.2007.03.008
  6. A. Cornec, I. Scheider, K.H. Schwalbe, On the practical application of the cohesive model, Eng. Fract. Mech. 70 (2003) 1963-1987. https://doi.org/10.1016/S0013-7944(03)00134-6
  7. H.S. Nam, J.S. Kim, H.W. Ryu, Y.J. Kim, J.W. Kim, Numerical ductile tearing simulation of circumferential cracked pipe tests under dynamic loading conditions, Nucl. Eng. Technol. 48 (5) (2016) 1252-1263. https://doi.org/10.1016/j.net.2016.03.012
  8. C. Wang, J. Wang, Y. Li, C. Zhang, W. Xu, Simulation of impact toughness with the effect of temperature and irradiation in steels, Nucl. Eng. Technol. 51 (1) (2019) 221-227. https://doi.org/10.1016/j.net.2018.08.016
  9. G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, Adv. Appl. Mech. 7 (1962) 55-129. https://doi.org/10.1016/S0065-2156(08)70121-2
  10. X. Chen, X. Deng, M.A. Sutton, P. Zavattieri, An inverse analysis of cohesive zone model parameter values for ductile crack growth simulations, Int. J. Mech. Sci. 79 (2014) 206-215. https://doi.org/10.1016/j.ijmecsci.2013.12.006
  11. S.J. Sung, J. Pan, P.S. Korinko, M. Morgan, A. McWillliams, Simulations of fracture tests of uncharged and hydrogen-charged additively manufactured 304 stainless steel specimens using cohesive zone modeling, Eng. Fract. Mech. 209 (2019) 125-146. https://doi.org/10.1016/j.engfracmech.2019.01.006
  12. F. Javidrad, M. Mashayekhy, A cohesive zone model for crack growth simulation in AISI 304 steel, J. Solid Mech. 6 (2014) 378-388.
  13. D.J. Shim, M. Uddin, F. Brust, G. Wilkowski, Cohesive zone modeling of ductile crack growth in circumferential through-wall-cracked pipe tests, in: ASME 2011 Pressure Vessels and Piping Conference, 2011. Baltimore, USA, July 17-21.
  14. D.J. Shim, D. Rudland, F. Brust, Comparison of through-wall and complex crack behaviors in dissimilar metal weld pipe using cohesive zone modeling, in: ASME 2013 Pressure Vessels and Piping Conference, 2013. Paris, France, July 14-18.
  15. G. Zhao, J. Li, Y.X. Zhang, J. Zhong, Z. Liang, S. Xiao, A study on ductile fracture of coiled tubing based on cohesive zone model, Eng. Fract. Mech. 209 (2019) 260-273. https://doi.org/10.1016/j.engfracmech.2019.01.027
  16. V.T. Vanapalli, B.K. Dutta, J. Chattopadhyay, N.M. Jose, Stress triaxiality based transferability of cohesive zone parameters, Eng. Fract. Mech. 224 (2020) 106789. https://doi.org/10.1016/j.engfracmech.2019.106789
  17. B.L. Boyce, S.L. Kramer, H.E. Fang, T.E. Cordova, M.K. Neilsen, K. Dion, et al., The Sandia Fracture Challenge: blind round robin predictions of ductile tearing, Int. J. Fract. 186 (2014) 5-68. https://doi.org/10.1007/s10704-013-9904-6
  18. Battelle, Pipe fracture encyclopedia, US Nucl. Regul. Comm. 3 (1997).
  19. J.H. Hollomon, Tensile deformation, Aime. Trans. 12 (1945) 1-22.
  20. ASTM, E1820-13 Standard Test Method for Measurement of Fracture Toughness, ASTM, 2014.
  21. K. Park, G.H. Paulino, Cohesive zone models: a critical review of tractionseparation relationships across fracture surfaces, ASME Appl. Mech. Rev. 64 (2011), 060802-060802-20. https://doi.org/10.1115/1.4023110
  22. I. Scheider, M. Schodel, W. Brocks, W. Schonfeld, Crack propagation analyses with CTOA and cohesive model: comparison and experimental validation, Eng. Fract. Mech. 73 (2006) 252-263. https://doi.org/10.1016/j.engfracmech.2005.04.005
  23. I. Scheider, W. Brocks, Cohesive elements for thin-walled structures, Comput. Mater. Sci. 37 (2006) 101-109. https://doi.org/10.1016/j.commatsci.2005.12.042
  24. I. Scheider, Derivation of separation laws for cohesive models in the course of ductile fracture, Eng. Fract. Mech. 76 (2009) 1450-1459. https://doi.org/10.1016/j.engfracmech.2008.12.006
  25. T. Siegmund, W. Brocks, The role of cohesive strength and separation energy for modeling of ductile fracture, Fatigue Fract. Mech. 30 (2000) 139-151.
  26. S. Parmar, C. Bassindale, X. Wang, W.R. Tyson, S. Xu, Simulation of ductile fracture in pipeline steels under varying constraint conditions using cohesive zone modeling, Int. J. Pres. Ves. Pip. 162 (2018) 86-97. https://doi.org/10.1016/j.ijpvp.2018.03.003
  27. K. Ha, H. Baek, K. Park, Convergence of fracture process zone size in cohesive zone modeling, Appl. Math. Model. 39 (2015) 5828-5836. https://doi.org/10.1016/j.apm.2015.03.030
  28. W. Brocks, Plasticity and Fracture, first ed., Springer, Germany, 2018.
  29. H. Yuan, X. Li, Effects of the cohesive law on ductile crack propagation simulation by using cohesive zone models, Eng. Fract. Mech. 126 (2014) 1-11. https://doi.org/10.1016/j.engfracmech.2014.04.019
  30. K. Song, C.G. Davila, C.A. Rose, Guidelines and parameter selection for the simulation of progressive delamination, in: 2008 Abaqus Users' Conference, 2008. Newport, United States, May 19-22.
  31. Z. Xue, M.G. Pontin, F.W. Zok, J.W. Hutchinson, Calibration procedures for a computational model of ductile fracture, Eng. Fract. Mech. 77 (2010) 492-509. https://doi.org/10.1016/j.engfracmech.2009.10.007
  32. Dassault Systems, ABAQUS, 2018. Version 6.18.
  33. W. Brocks, I. Scheider, Numerical Aspects of the Path-Dependence of the JIntegral in Incremental Plasticity, GKSS Forschungszentrum, 2001, pp. 1-33. GKSS/WMS/01/08.
  34. X.K. Zhu, J.A. Joyce, Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization, Eng. Fract. Mech. 85 (2012) 1-46. https://doi.org/10.1016/j.engfracmech.2012.02.001
  35. N.S. Huh, Y.J. Kim, Determination of J-integral using the load-COD record for circumferential through-wall cracked pipes, J. Pressure Vessel Technol. 130 (2008), 041402. https://doi.org/10.1115/1.2967830

Cited by

  1. On the transferability of CTOA from small‐scale DWTT to full‐scale pipe using a cohesive zone model vol.44, pp.9, 2021, https://doi.org/10.1111/ffe.13525