Browse > Article
http://dx.doi.org/10.1016/j.net.2020.07.041

Application of cohesive zone model to large scale circumferential through-wall and 360° surface cracked pipes under static and dynamic loadings  

Moon, Ji-Hee (Department of Mechanical System Design Engineering, Seoul National University of Science and Technology)
Jang, Youn-Young (Department of Mechanical System Design Engineering, Seoul National University of Science and Technology)
Huh, Nam-Su (Department of Mechanical System Design Engineering, Seoul National University of Science and Technology)
Shim, Do-Jun (Structural Integrity Associates)
Park, Kyoungsoo (School of Civil and Environmental Engineering, Yonsei University)
Publication Information
Nuclear Engineering and Technology / v.53, no.3, 2021 , pp. 974-987 More about this Journal
Abstract
This paper presents ductile fracture simulation of full-scale cracked pipe for nuclear piping materials using the cohesive zone model (CZM). The main objective of this study is to investigate the applicability of CZM to predict ductile fracture of cracked pipes with various crack shapes and under quasi-static/dynamic loadings. The transferability of the traction-separation (T-S) curve from a small-scale specimen to a full-scale pipe is demonstrated by simulating small- and full-scale tests. T-S curves are calibrated by comparing experimental data of compact tension specimens with finite element analysis results. The calibrated T-S curves are utilized to predict the fracture behavior of cracked pipes. Three types of full-scale pipe tests are considered: pipe with circumferential through-wall crack under quasistatic/dynamic loadings, and with 360° internal surface crack under quasi-static loading. Computational results using the calibrated T-S curves show a good agreement with experimental data, demonstrating the transferability of the T-S curves from small-scale specimen.
Keywords
Cohesive zone model; Traction-separation law; Transferability; Full-scale cracked pipes; Finite element analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D.J. Shim, M. Uddin, F. Brust, G. Wilkowski, Cohesive zone modeling of ductile crack growth in circumferential through-wall-cracked pipe tests, in: ASME 2011 Pressure Vessels and Piping Conference, 2011. Baltimore, USA, July 17-21.
2 G. Zhao, J. Li, Y.X. Zhang, J. Zhong, Z. Liang, S. Xiao, A study on ductile fracture of coiled tubing based on cohesive zone model, Eng. Fract. Mech. 209 (2019) 260-273.   DOI
3 J.H. Hollomon, Tensile deformation, Aime. Trans. 12 (1945) 1-22.
4 I. Scheider, M. Schodel, W. Brocks, W. Schonfeld, Crack propagation analyses with CTOA and cohesive model: comparison and experimental validation, Eng. Fract. Mech. 73 (2006) 252-263.   DOI
5 T. Siegmund, W. Brocks, The role of cohesive strength and separation energy for modeling of ductile fracture, Fatigue Fract. Mech. 30 (2000) 139-151.
6 W. Brocks, Plasticity and Fracture, first ed., Springer, Germany, 2018.
7 Z. Xue, M.G. Pontin, F.W. Zok, J.W. Hutchinson, Calibration procedures for a computational model of ductile fracture, Eng. Fract. Mech. 77 (2010) 492-509.   DOI
8 D.J. Shim, D. Rudland, F. Brust, Comparison of through-wall and complex crack behaviors in dissimilar metal weld pipe using cohesive zone modeling, in: ASME 2013 Pressure Vessels and Piping Conference, 2013. Paris, France, July 14-18.
9 I. Scheider, W. Brocks, Simulation of cupecone fracture using the cohesive model, Eng. Fract. Mech. 70 (2003) 1943-1961.   DOI
10 W. Brocks, I. Scheider, Numerical Aspects of the Path-Dependence of the JIntegral in Incremental Plasticity, GKSS Forschungszentrum, 2001, pp. 1-33. GKSS/WMS/01/08.
11 Dassault Systems, ABAQUS, 2018. Version 6.18.
12 K. Park, G.H. Paulino, Cohesive zone models: a critical review of tractionseparation relationships across fracture surfaces, ASME Appl. Mech. Rev. 64 (2011), 060802-060802-20.   DOI
13 X. Chen, X. Deng, M.A. Sutton, P. Zavattieri, An inverse analysis of cohesive zone model parameter values for ductile crack growth simulations, Int. J. Mech. Sci. 79 (2014) 206-215.   DOI
14 I. Scheider, Derivation of separation laws for cohesive models in the course of ductile fracture, Eng. Fract. Mech. 76 (2009) 1450-1459.   DOI
15 S. Parmar, C. Bassindale, X. Wang, W.R. Tyson, S. Xu, Simulation of ductile fracture in pipeline steels under varying constraint conditions using cohesive zone modeling, Int. J. Pres. Ves. Pip. 162 (2018) 86-97.   DOI
16 K. Ha, H. Baek, K. Park, Convergence of fracture process zone size in cohesive zone modeling, Appl. Math. Model. 39 (2015) 5828-5836.   DOI
17 H. Yuan, X. Li, Effects of the cohesive law on ductile crack propagation simulation by using cohesive zone models, Eng. Fract. Mech. 126 (2014) 1-11.   DOI
18 K. Song, C.G. Davila, C.A. Rose, Guidelines and parameter selection for the simulation of progressive delamination, in: 2008 Abaqus Users' Conference, 2008. Newport, United States, May 19-22.
19 N.S. Huh, Y.J. Kim, Determination of J-integral using the load-COD record for circumferential through-wall cracked pipes, J. Pressure Vessel Technol. 130 (2008), 041402.   DOI
20 X.K. Zhu, J.A. Joyce, Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization, Eng. Fract. Mech. 85 (2012) 1-46.   DOI
21 S.J. Sung, J. Pan, P.S. Korinko, M. Morgan, A. McWillliams, Simulations of fracture tests of uncharged and hydrogen-charged additively manufactured 304 stainless steel specimens using cohesive zone modeling, Eng. Fract. Mech. 209 (2019) 125-146.   DOI
22 A. Cornec, I. Scheider, K.H. Schwalbe, On the practical application of the cohesive model, Eng. Fract. Mech. 70 (2003) 1963-1987.   DOI
23 G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, Adv. Appl. Mech. 7 (1962) 55-129.   DOI
24 V.T. Vanapalli, B.K. Dutta, J. Chattopadhyay, N.M. Jose, Stress triaxiality based transferability of cohesive zone parameters, Eng. Fract. Mech. 224 (2020) 106789.   DOI
25 A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part Idyield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol. 99 (1977) 2-15.   DOI
26 C.C. Chu, A. Needleman, Void nucleation effects in biaxially stretched sheets, J. Eng. Mater. Technol. 102 (1980) 249-256.   DOI
27 F. Javidrad, M. Mashayekhy, A cohesive zone model for crack growth simulation in AISI 304 steel, J. Solid Mech. 6 (2014) 378-388.
28 Z. Xue, M.G. Pontin, F.W. Zok, J.W. Hutchinson, Calibration procedures for a computational model of ductile fracture, Eng. Fract. Mech. 77 (2010) 492-509.   DOI
29 H.S. Nam, J.S. Kim, H.W. Ryu, Y.J. Kim, J.W. Kim, Numerical ductile tearing simulation of circumferential cracked pipe tests under dynamic loading conditions, Nucl. Eng. Technol. 48 (5) (2016) 1252-1263.   DOI
30 C. Wang, J. Wang, Y. Li, C. Zhang, W. Xu, Simulation of impact toughness with the effect of temperature and irradiation in steels, Nucl. Eng. Technol. 51 (1) (2019) 221-227.   DOI
31 I. Scheider, W. Brocks, Cohesive elements for thin-walled structures, Comput. Mater. Sci. 37 (2006) 101-109.   DOI
32 B.L. Boyce, S.L. Kramer, H.E. Fang, T.E. Cordova, M.K. Neilsen, K. Dion, et al., The Sandia Fracture Challenge: blind round robin predictions of ductile tearing, Int. J. Fract. 186 (2014) 5-68.   DOI
33 Battelle, Pipe fracture encyclopedia, US Nucl. Regul. Comm. 3 (1997).
34 ASTM, E1820-13 Standard Test Method for Measurement of Fracture Toughness, ASTM, 2014.
35 C.K. Oh, Y.J. Kim, J.H. Baek, Y.P. Kim, W. Kim, A phenomenological model of ductile fracture for API X65 steel, Int. J. Mech. Sci. 49 (2007) 1399-1412.   DOI