• Title/Summary/Keyword: Engineering process

Search Result 46,006, Processing Time 0.07 seconds

A study on minimization of fracture surface in fine blanking process using factorial analysis (요인분석법을 이용한 파인 블랭킹 공정의 파단면 최소화에 관한 연구)

  • Lee, Beom-Soon;Kim, Ok-Hwan
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.41-47
    • /
    • 2021
  • The Fine Blanking process is an effective precision shearing process that can obtain a smooth cutting surface and high product precision through a single blanking process. It is widely used in various manufacturing fields. However, shearing through this fine blanking process is only intended to minimize burrs, die rolls and fracture surfaces and does not completely remove them. Therefore, it is necessary to study the minimization of burrs, die rolls and fracture surfaces in the fine blanking process. In this study, a study was conducted on the relationship between the fracture surface and process conditions that occurred during product production using the fine blanking process. For this purpose, the shape of the V-ring indenter, the distance to the punch, and the pressure force, clearance, shear rate, and physical properties of the material were selected as process and design variables, and the relationship with the fracture surface according to each process and design condition was tested. It was analyzed through the Experimental Design Method.

A Design Process Analysis with the DSM and the QFD in Automatic Transmission Lever Design (DSM과 QFD 분석을 이용한 오토레버 설계 과정의 분석)

  • 천준원;박지형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.9-12
    • /
    • 2003
  • This paper describes a step-by-step method to minimize design iterations in a process of product design change. In the design process, two components are coupled if a change of a component can require the other components change, and design iterations are generated by the coupling. The design iteration is one of main factors that increase design effort. In this study, three matrices are used to solve the design iteration of automatic transmission lever, Requirement-Engineering matrix, Engineering-Components matrix, and DSM(Design Structure Matrix). Firstly, with the DSM, the product architecture and conceptual design process are proposed from product function analysis. Secondly, with the QFD, the Requirement-Engineering matrix and Engineering-Components matrix present the relationship among customer requirements, engineering issues, and product components. Lastly, the results of the QFD analysis are used in the DSM to solve the component interactions and to provide design

  • PDF

Development of Capstone Design Education Model Using 6-sigma Methodology (6-sigma 방법론을 적용한 종합설계 교육모델 개발)

  • Ryu, Kyunghyun
    • Journal of Engineering Education Research
    • /
    • v.23 no.4
    • /
    • pp.28-36
    • /
    • 2020
  • Capstone design education is essential in the engineering design process according to the certification standards of ABEEK. Capstone design process should be properly trained in undergraduate courses in order to increase the design ability of systems, components and processes within realistic constraints. In this study, a modified design model as a capstone design education model was proposed to reduce the separation between the design process at industrial sites and the design process at university education. The modified design model based on 6-sigma methodology is composed of 6 design steps such as define, measure, analyse, design, verify, and report. Each step has appropriated design contents and tools, and is configured to generate design results. The proposed design model was directly applied to the capstone design class for automotive engineering in Kunsan National University, and it was confirmed that the proposed DMADVR methodology was a very useful design education model to enhance the design ability, teamwork ability and communication skills required by ABEEK.

Enhancement of Transmittance and Adhesion of Flexible Display Adhesion Surface by Bubble Removing Process (기포 제거 공정을 통한 유연한 디스플레이 합착 면의 투과율 및 접착력 향상)

  • Kim, Jungsoo;Jang, Kyungsoo;Phu, Cam;Park, Heejun;Shin, Donggi;Lee, Younjung;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.330-334
    • /
    • 2018
  • With the development of the Internet of Things, the use of flexible displays has become widespread. In particular, the use of curved, bendable, and rollable displays is increasing. Flexible display production processes include various important components such as lamination material, flexible substrates, and adhesives. Among them, improvement of the lamination process comprises a large proportion of efforts for further development. In this paper, we attempt to improve the transmittance of the display substrate by performing a bubble removal process after adhesion. The transmittance of the glass substrate with the bubble removal process was 5~12% higher than that of the substrate without the bubble removal process. The fill-strength after the bubble removal process was improved by 21.4%, and the shear-strength was improved by 43.9%.

A reaction-diffusion modeling of carbonation process in self-compacting concrete

  • Fu, Chuanqing;Ye, Hailong;Jin, Xianyu;Jin, Nanguo;Gong, Lingli
    • Computers and Concrete
    • /
    • v.15 no.5
    • /
    • pp.847-864
    • /
    • 2015
  • In this paper, a reaction-diffusion model of carbonation process in self-compacting concrete (SCC) was realized with a consideration of multi-field couplings. Various effects from environmental conditions, e.g. ambient temperature, relative humidity, carbonation reaction, were incorporated into a numerical simulation proposed by ANSYS. In addition, the carbonation process of SCC was experimentally investigated and compared with a conventionally vibrated concrete (CVC). It is found that SCC has a higher carbonation resistance than CVC with a comparable compressive strength. The numerical solution analysis agrees well with the test results, indicating that the proposed model is appropriate to calculate and predict the carbonation process in SCC. The parameters sensitivity analysis also shows that the carbon dioxide diffusion coefficient and moisture field are essentially crucial to the carbonation process in SCC.

A Study on the Optimization for the Blasting Process of Glass by Taguchi Method (다구찌 기법을 이용한 유리소재의 블라스팅 가공공정의 최적화에 관한 연구)

  • Yoo, Woo-Sik;Jin, Quan-Qia;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.2
    • /
    • pp.8-14
    • /
    • 2007
  • The powder blasting process has become an important machining technique for the cost effective fabrication of micro devices. This process is similar to sand blasting, and effectively removes hard and brittle materials. A large number of investigations on the abrasive jet machining with such output parameters as material removal rate, penetration and surface roughness have been carried out and reported by various authors. To achieve higher surface roughness, to increase material removal rate and to identify the influence of blasting parameters on the output parameters, we use the taguchi method which is one of the design methods of experiments. We can select process parameters to optimize the blasting process of glass. Experimental results indicate that the taguchi method is useful as a robust design methodology for the powder blasting process.

Comparative Study and Electrochemical Properties of LiFePO4F Synthesized by Different Routes

  • Huang, Bin;Liu, Suqin;Li, Hongliang;Zhuang, Shuxin;Fang, Dong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2315-2319
    • /
    • 2012
  • To improve the performance of $LiFePO_4F$, a novel sol-gel process is developed. For comparison, ceramic process is also implemented. From X-ray diffraction results we know that each sample adopts a triclinic $P{\bar{1}}$ space group, and they are isostructural with amblygonite and tavorite. The scanning electron microscope images show that the homogeneous grains with the dimension of 300-500 nm is obtained by the sol-gel process; meanwhile the sample particles obtained by ceramic process are as big as 1000-3000 nm. By galvanostatic tests and at electrochemical impedance spectroscopy method, the sample obtained by sol-gel process presents better electrochemical properties than the one obtained by ceramic process.