Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.7.2315

Comparative Study and Electrochemical Properties of LiFePO4F Synthesized by Different Routes  

Huang, Bin (College of Chemistry and Chemical Engineering, Central South University)
Liu, Suqin (College of Chemistry and Chemical Engineering, Central South University)
Li, Hongliang (College of Chemistry and Chemical Engineering, Central South University)
Zhuang, Shuxin (College of Chemistry and Chemical Engineering, Central South University)
Fang, Dong (College of Chemistry and Chemical Engineering, Central South University)
Publication Information
Abstract
To improve the performance of $LiFePO_4F$, a novel sol-gel process is developed. For comparison, ceramic process is also implemented. From X-ray diffraction results we know that each sample adopts a triclinic $P{\bar{1}}$ space group, and they are isostructural with amblygonite and tavorite. The scanning electron microscope images show that the homogeneous grains with the dimension of 300-500 nm is obtained by the sol-gel process; meanwhile the sample particles obtained by ceramic process are as big as 1000-3000 nm. By galvanostatic tests and at electrochemical impedance spectroscopy method, the sample obtained by sol-gel process presents better electrochemical properties than the one obtained by ceramic process.
Keywords
$LiFePO_4F$; Tavorite; Sol-gel preparation;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Bard, A.; Faulkner, L. Electrochemical Methods; 2nd ed.; Wiley: New York, U. S. A., 2001; p 231.
2 Ramesh, T. N.; Lee, K. T.; Ellis, B. L.; Nazar, L. F. Electrochem. Solid-State Lett. 2010, 13, A43.   DOI
3 Recham, N.; Chotard, J. N.; Dupont, L.; Delacourt, C.; Walker, W.; Armand, M.; Tarascon, J. M. Nat. Mater. 2009, 9, 68-74.
4 Barker, J.; Saidi, M. Y.; Swoyer, J. L. J. Electrochem. Soc. 2003, 150, A1394.   DOI
5 Barpanda, P.; Chotard, J. N.; Delacourt, C.; Reynaud, M.; Filinchuk, Y.; Armand, M.; Deschamps, M.; Tarascon, J. M. Angew. Chem. Int. Ed. 2011, 50, 2526.   DOI
6 Tripathi, R.; Ramesh, T. N.; Ellis, B. L.; Nazar, L. F. Angew. Chem. Int. Ed. 2010, 49, 8738.   DOI
7 Marx, N.; Croguennec, L.; Carlier, D.; Wattiaux, A.; Cras, F. L.; Suard, E.; Delmas, C. Dalton T. 2010, 39, 5108.   DOI
8 Reddy, M. V.; Subba, Rao, G. V.; Chowdari, B. V. R. J. Power Sources 2010, 195, 5768.   DOI
9 Qiao, X.; Yang, J.; Wang, Y.; Chen, Q.; Zhang, T.; Liu, L.; Wang, X. J. Solid State Electrochem. 2011, DOI:10.1007/s10008-011-1512-7.
10 Recham, N.; Chotard, J. N.; Jumas, J. C.; Laffont, L.; Armand, M.; Tarascon, J. M. Chem. Mater. 2010, 22, 1142.   DOI   ScienceOn
11 Barker, J.; Saidi, M.; Swoyer, J. US Pat 2002, 6855462 B2.
12 Liu, J.; Jiang, R.; Wang, X.; Huang, T.; Yu, A. J. Power Sources 2009, 194, 536.   DOI
13 Molenda, J.; Ojczyk, W.; Marzec, J. J. Power Sources 2007, 174, 689.   DOI