• Title/Summary/Keyword: Engineering Exploration

Search Result 1,421, Processing Time 0.029 seconds

Adaptive block tree structure for video coding

  • Baek, Aram;Gwon, Daehyeok;Son, Sohee;Lee, Jinho;Kang, Jung-Won;Kim, Hui Yong;Choi, Haechul
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.313-323
    • /
    • 2021
  • The Joint Video Exploration Team (JVET) has studied future video coding (FVC) technologies with a potential compression capacity that significantly exceeds that of the high-efficiency video coding (HEVC) standard. The joint exploration test model (JEM), a common platform for the exploration of FVC technologies in the JVET, employs quadtree plus binary tree block partitioning, which enhances the flexibility of coding unit partitioning. Despite significant improvement in coding efficiency for chrominance achieved by separating luminance and chrominance tree structures in I slices, this approach has intrinsic drawbacks that result in the redundancy of block partitioning data. In this paper, an adaptive tree structure correlating luminance and chrominance of single and dual trees is presented. Our proposed method resulted in an average reduction of -0.24% in the Y Bjontegaard Delta rate relative to the intracoding of JEM 6.0 common test conditions.

An Analysis of Mid-Course Correction Maneuvers according to Launch-Vehicle Dispersion in Earth-Moon Phasing-Loop Trajectory (지구-달 위상전이궤적에서 발사체 투입오차가 중간경로수정기동에 미치는 영향 분석)

  • Choi, Su-Jin;Lee, Dong-Hun;Suk, Byong-Suk;Min, Seung-Yong;Rew, Dong-Young
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.4
    • /
    • pp.35-40
    • /
    • 2016
  • Mid-course correction maneuvers (MCCMs) are necessary to correct the launch-vehicle dispersion to go to the Moon. There were 3 or 4 MCCMs needed for a direct transfer trajectory. But the strategy for MCCMs of the phasing-loop trajectory is different, because it has a longer trans-lunar trajectory than direct transfer does. An orbiter using a phasing-loop trajectory has several rotations of the Earth, so the orbiter has several good places, such as perigee and apogee, to correct the launch-vehicle dispersion. Although launch dispersion is relatively high, the launch vehicle is not as accurate as we expected. A good MCCM strategy can overcome the high dispersion by using small-magnitude correction maneuvers. This paper describes the phasing-loops sequence and strategy to correct high launch-vehicle dispersions.

New Equivalent Circuit Model for Interpreting Spectral Induced Polarization Anomalous Data (광대역유도분극 이상 자료의 해석을 위한 새로운 등가회로 모델)

  • Shin, Seungwook;Park, Samgyu;Shin, Dongbok
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.4
    • /
    • pp.242-246
    • /
    • 2014
  • Spectral induced polarization (SIP) is a useful technique, which uses electrochemical properties, for exploration of metallic sulfide minerals. Equivalent circuit analysis is commonly conducted to calculate IP parameters from SIP data. An equivalent circuit model, which indicates the SIP response of rock, has a non-uniqueness problem. For this reason, it is very important to select the proper model for accurate analysis. Thus, this study focused on suggesting a new model, which suitable for the analysis of an anomalous SIP response, such as ore. A suitability of the new model was verified by comparing it with the existing Dias model and Cole-Cole models. Analysis errors were represented as a normalized root mean square error (NRMSE). The analysis result using the Dias model was the NRMSE of 10.50% and was the NRMSE using the Cole-Cole model of 17.03%. Howerver, because the NRMSE of the new model is 0.87%, it is considered that the new model is more useful for analyzing the anomalous SIP data than other models.

Space Planet Exploration Rover Climbing Test Site Design (우주 행성 탐사 로버 등판 시험장 설계)

  • Byung-Hyun Ryu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.1-8
    • /
    • 2023
  • Space exploration is at the forefront of human scientific endeavors, and planetary exploration rovers play a critical role in studying planetary surfaces. Rover performance is especially vital for safely navigating steep terrain and delicate landscapes found on planets like Mars and the Moon. This paper offers a comprehensive overview of a landing testbed designed to simulate challenging extraterrestrial terrain and loose regolith. The paper briefly outlines lunar crater region topographical features and highlights the importance of these simulations in rover testing. It then explores previous landing testbed developments and describes the design process for a landing testbed to be installed in the dirty thermal vacuum chamber at the Korea Institute of Civil Engineering and Building Technology. Once realized, this proposed landing testbed will enable precise evaluations of rover mobility and exploration capabilities under lunar-like conditions, including high vacuum and extreme temperatures.

A Fast Decision Method of Quadtree plus Binary Tree (QTBT) Depth in JEM (차세대 비디오 코덱(JEM)의 고속 QTBT 분할 깊이 결정 기법)

  • Yoon, Yong-Uk;Park, Do-Hyun;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.22 no.5
    • /
    • pp.541-547
    • /
    • 2017
  • The Joint Exploration Model (JEM), which is a reference SW codec of the Joint Video Exploration Team (JVET) exploring the future video standard technology, provides a recursive Quadtree plus Binary Tree (QTBT) block structure. QTBT can achieve enhanced coding efficiency by adding new block structures at the expense of largely increased computational complexity. In this paper, we propose a fast decision algorithm of QTBT block partitioning depth that uses the rate-distortion (RD) cost of the upper and current depth to reduce the complexity of the JEM encoder. Experimental results showed that the computational complexity of JEM 5.0 can be reduced up to 21.6% and 11.0% with BD-rate increase of 0.7% and 1.2% in AI (All Intra) and RA (Random Access), respectively.

Laboratory/In situ Sound Velocities of Shelf Sediments in the South Sea of Korea

  • Kim, Dae-Choul;Kim, Gil-Young;Jung, Ja-Hun;Seo, Young-Kyo;Wilkens, Roy H.;Yoo, Dong-Geun;Lee, Gwang-Hoon;Kim, Jeong-Chang;Yi, Hi-Il;Cifci, Gunay
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.2
    • /
    • pp.103-112
    • /
    • 2008
  • Compressional sound velocities of shelf sediments in the South Sea of Korea, were measured in situ and in the laboratory for six cores. In situ sound velocity was measured using the Acoustic Lance (frequency of 7.5-15 kHz), while laboratory velocity was measured by the pulse transmission technique (frequency of 1MHz). Physical properties were relatively uniform with sediment depth, suggesting little effect of sediment compaction and/or consolidation. Average in situ velocity at each core site ranged from 1,457 to 1,488 m/s, which was less than the laboratory velocity of 1,503 and 1,604m/s. In muddy sediments the laboratory velocity was 39-47 m/s higher than in situ velocity. In sandy sediments, the difference was greater by an average of 116 m/s. Although the velocity data were corrected by the velocity ratio method based on bottom water temperature, the laboratory velocity was still higher than the in situ velocity (11-21 m/s in muddy sediments and 91 m/s in sandy sediments). This discrepancy may be caused by sediment disturbance during core collection and/or by the pressure of Acoustic Lance insertion, but it was most likely due to the frequency difference between in situ and laboratory measurement systems. Thus, when correcting laboratory velocity to in situ velocity, it is important to consider both temperature and frequency.

Selection of Architect Engineering Concept for Barge Mounted SMR Using Systems Engineering Approach

  • Hossen, Muhammed Mufazzal;Owino, Ohaga Eric;Jung, J.C.
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.17-32
    • /
    • 2014
  • The trade-off studies in the concept development stage to assess the relative goodness of alternative systems concepts for AE (architect engineering) design for the Barge Mounted SMR (BMSMR) is introduced. With respect to design margin, system performance, schedule and risk, the design selection is cond ucted using the following characteristics; barge mobility, system safety under the natural disaster (seismic), power output, interfacing with the other system, and the additional supporting functions as desalination. There are three findings that should be remedied; deficiencies in the assumed characteristics of the system being modeled, deficiencies in the test model, and excessively stringent system requirements. This study is performed using systems engineering approach with trade off matrix method. In order to execute this work, concept development stage is divided into three (3) phases as NA (needs analysis), CE (concept exploration), and CD (concept definition).

MEASUREMENT AND SIMULATION OF EQUATORIAL IONOSPHERIC PLASMA BUBBLES TO ASSESS THEIR IMPACT ON GNSS PERFORMANCE

  • Tsujii, Toshiaki;Fujiwara, Takeshi;Kubota, Tetsunari;Satirapod, Chalermchon;Supnithi, Pornchai;Tsugawa, Takuya;Lee, Hungkyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_2
    • /
    • pp.607-613
    • /
    • 2012
  • Ionospheric anomaly is one of the major error sources which deteriorate the GNSS performance. In the equatorial region, effects of the ionospheric plasma bubbles are of great interest because they are pretty common phenomena, especially in the period of the high solar activity. In order to evaluate the GNSS performance under circumstance of the bubbles, an ionospheric scintillation monitor has been developed and installed in Bangkok, Thailand. Furthermore, a model simulating the ionospheric delay and scintillation due to the bubbles has been developed. Based on these developments, the effects of the simulated plasma bubbles are analyzed and their agreement with the real observation is demonstrated. An availability degradation of the GPS ground based augmentation system (GBAS) caused by the bubbles is exampled in details. Finally, an integrated GPS/INS approach based on the Doppler frequency is proposed to remedy the deterioration.

Characteristics of waterflood at low rate in low permeability sandstones based on the CT scanning

  • Mo, S.Y.;Lei, Q.;Lei, G.;Gai, S.H.;Liu, Z.K.
    • Geosystem Engineering
    • /
    • v.21 no.6
    • /
    • pp.344-351
    • /
    • 2018
  • It is reported that the flooding rate in low permeability sandstones is low and the oil recovery is hard to increase after water breakthrough. Understanding characteristics of waterflood is hence important for the recovery improvement. In this work, flooding tests on low permeability sandstones were conducted. The corresponding flooding characteristics were investigated by means of CT scanning and Nuclear Magnetic Resonance. Effects of irreducible water and different rates were also discussed in detail. Experimental results reveal a piston-like displacement at a low rate in low permeability samples. The saturation profile is steep and almost vertical to the forward direction. The results at a low rate confirm that once water broke through, increasing the flooding rate or flooding time can hardly reduce the remaining oil inside the sample. It is probably due to the high pore-throat ratio proven by rate-controlled mercury. Results also confirm that the presence of initial water enhanced sweep efficiency substantially. On one hand, because water had previously occupied the small pores, the subsequent oil can only invade relatively large pores and became more movable. On the other hand, stable collars can not form due to the steep front, which may suppress the snap-off.

Convergence of Initial Estimation Error in a Hybrid Underwater Navigation System with a Range Sonar (초음파 거리계를 갖는 수중복합항법시스템의 초기오차 수렴 특성)

  • LEE PAN MOOK;JUN BONG HUAN;KIM SEA MOON;CHOI HYUN TAEK;LEE CHONG MOO;KIM KI HUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.78-85
    • /
    • 2005
  • Initial alignment and localization are important topics in inertial navigation systems, since misalignment and initial position error wholly propagate into the navigation systems and deteriorate the performance of the systems. This paper presents the error convergence characteristics of the hybrid navigation system for underwater vehicles initial position, which is based on an inertial measurement unit (IMU) accompanying a range sensor. This paper demonstrates the improvement on the navigational performance oj the hybrid system with the range information, especially focused on the convergence of the estimation of underwater vehicles initial position error. Simulations are performed with experimental data obtained from a rotating ann test with a fish model. The convergence speed and condition of the initial error removal for random initial position errors are examined with Monte Carlo simulation. In addition, numerical simulation is conducted with an AUV model in lawn-mowing survey mode to illustrate the error convergence of the hybrid navigation System for initial position error.