DOI QR코드

DOI QR Code

Space Planet Exploration Rover Climbing Test Site Design

우주 행성 탐사 로버 등판 시험장 설계

  • Byung-Hyun Ryu (Department of Future & Smart Construction Research, Korea Institute of Civil Engineering and Building Technology (KICT))
  • Received : 2023.10.30
  • Accepted : 2023.12.04
  • Published : 2023.12.30

Abstract

Space exploration is at the forefront of human scientific endeavors, and planetary exploration rovers play a critical role in studying planetary surfaces. Rover performance is especially vital for safely navigating steep terrain and delicate landscapes found on planets like Mars and the Moon. This paper offers a comprehensive overview of a landing testbed designed to simulate challenging extraterrestrial terrain and loose regolith. The paper briefly outlines lunar crater region topographical features and highlights the importance of these simulations in rover testing. It then explores previous landing testbed developments and describes the design process for a landing testbed to be installed in the dirty thermal vacuum chamber at the Korea Institute of Civil Engineering and Building Technology. Once realized, this proposed landing testbed will enable precise evaluations of rover mobility and exploration capabilities under lunar-like conditions, including high vacuum and extreme temperatures.

우주 탐사는 인류의 과학적 노력 중 가장 선두에 있으며, 행성 탐사 로버는 행성 지표면을 연구하는 핵심 장비이다. 행성 로버의 성능은 가파른 경사와 다양한 행성 지형을 탐지하고 통과하는 데 큰 영향을 미치며 특히 달과 같은 행성에서는 급격한 경사와 연약한 지면을 안전하게 등반하고 이동할 수 있는 능력이 필수적으로 요구된다. 이 논문에서는 우주 행성 탐사 로버가 직면하는 가파른 지형과 연약한 지면을 모사하는 등반 시험장의 설계와 검증 방법을 종합적으로 소개한다. 먼저 달의 크레이터 지역의 지형 특성과 탐사의 중요성을 간략히 설명하고, 기존 등반 시험장의 개발 사례를 살펴보며, 현재 한국건설기술연구원에서 운영 중인 지반열진공챔버 내에 설치 예정인 등반 시험장의 설계 과정을 설명한다. 본 연구에서 제안하는 등반 시험장이 개발되면 실제 달의 환경과 유사한 고진공, 극한 온도 조건에서 로버의 이동과 탐사 능력을 정밀하게 평가할 수 있을 것으로 기대된다.

Keywords

Acknowledgement

Research for this paper was carried out under the KICT research Program(project no. 20230081-001, Development of environmental simulator and advanced construction technologies over TRL6 extreme conditions) funded by the Ministry of Science and ICT.

References

  1. Ahmad, N. I., Shinichi, A. and Yasuhiro, F. (2016), "Development of wheeled rover for traversing steep slope of cohesionless sand with stuck recovery using assistive grousers", Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics, pp.1570-1575.43.
  2. Bekker, M. G. (1970), "Introduction to terain-vehicle systems", Journal of Teramechanics, Vol.7, No.1, pp.75-77. https://doi.org/10.1016/0022-4898(70)90051-0
  3. Chen, S. T. (1993), Analysis of the tractive performance of pneumatic tires over soft terain, Ph.D. Thesis, Carleton University, Otawa, pp.1-79.
  4. Garber, M. and Wong, J. Y. (1981), "Prediction of ground pres- sure distribution under tracked vehicles - I. An analytical method for predicting ground pressure distribution", Journal of Teramechanics, Vol.18, No.1, pp.1-23. https://doi.org/10.1016/0022-4898(81)90015-X
  5. Kim, J. Y. and Lee, J. H. (2014). "Real-Time Prediction of Optimal Control Parameters for Mobile Robots based on Estimated Strength of Ground Surface", Journal of Institute of Control, Robotics and Systems, Vol.20, No.1, pp.58-69. (In Korean). https://doi.org/10.5302/J.ICROS.2014.13.1921
  6. Hiroaki, I., Masataku, S., Kenji, N. and Kazuya, Y. (2012), "Modeling, Analysis, and control of an actively reconfigurable planetary rover for traversing slopes covered with loose soil", Journal of Field Robotics, Vol.30, No.6, pp.875-896.
  7. Iagnemma, K., Kang, S. W., Shibly, H. and Dubowsky, S. (2004), "Online terain parameter estimation for wheled mobile robots with aplication to planetary rovers", IEE Transactions on Robotics, Vol.20, No.5, pp.921-927. https://doi.org/10.1109/TRO.2004.829462
  8. Ishigami, G. (2008), Teramechanics-based analysis and control for lunar/planetary exploration robots, Ph.D. Thesis, Tohoku University, Sendai, pp.195-200.
  9. Li, S., Lucey, P. G. and Milliken, R. E. (2018), "Direct evidence of surface exposed water ice in the lunar polar regions", Proceedings of the National Academy of Sciences of the United States of America, Vol.115, pp.8907-8912. https://doi.org/10.1073/pnas.1802345115
  10. Medina, A., Mollinedo, L., Kapellos, K., Crespo, C. and Poulakis, P. (2015), "Design and realization of a rover autonimy testbed", ASTRA 2015 - 13th ESA Workshop on Advanced Space, Vol.22, No.4, pp.152-168.
  11. Ryu, B. H. (2022). "Drilling for Lunar Surface Exploration and Shear Strength Evaluation Based on Drilling Information", Journal of the Korean Geo-Environmental Society, Vol.23, No.10, pp.21-31. (In Korean). https://doi.org/10.14481/JKGES.2022.23.10.21
  12. Schepelmann, A. (2022), "Characterization of infrared optical motion tracking system in NASA's simulated lunar operations (SLOPE) laboratory", National Aeronautics and Space Administration, pp.1-9.
  13. Watson, K., Murray, B. and Brown, H. (1961), "On the possible presence of ice on the moon", J. Geophys. Res., Vol.66, No.5, pp.1598-1600. https://doi.org/10.1029/JZ066i005p01598
  14. Wong, J. Y. and Rece, A. R. (1967), "Prediction of rigid whel performance based on the analysis of soil-whel streses, Part 1. Performance of driven rigid whels", Journal of Teramechanics, Vol.4, No.1, pp.81-98. https://doi.org/10.1016/0022-4898(67)90105-X