Browse > Article
http://dx.doi.org/10.7582/GGE.2014.17.4.242

New Equivalent Circuit Model for Interpreting Spectral Induced Polarization Anomalous Data  

Shin, Seungwook (Exploration Geophysics and Mining Engineering Dept., Korea Institute of Geoscience and Mineral Resources)
Park, Samgyu (Exploration Geophysics and Mining Engineering Dept., Korea Institute of Geoscience and Mineral Resources)
Shin, Dongbok (Department of Geoenvironmental Sciences, Kongju National University)
Publication Information
Geophysics and Geophysical Exploration / v.17, no.4, 2014 , pp. 242-246 More about this Journal
Abstract
Spectral induced polarization (SIP) is a useful technique, which uses electrochemical properties, for exploration of metallic sulfide minerals. Equivalent circuit analysis is commonly conducted to calculate IP parameters from SIP data. An equivalent circuit model, which indicates the SIP response of rock, has a non-uniqueness problem. For this reason, it is very important to select the proper model for accurate analysis. Thus, this study focused on suggesting a new model, which suitable for the analysis of an anomalous SIP response, such as ore. A suitability of the new model was verified by comparing it with the existing Dias model and Cole-Cole models. Analysis errors were represented as a normalized root mean square error (NRMSE). The analysis result using the Dias model was the NRMSE of 10.50% and was the NRMSE using the Cole-Cole model of 17.03%. Howerver, because the NRMSE of the new model is 0.87%, it is considered that the new model is more useful for analyzing the anomalous SIP data than other models.
Keywords
spectral induced polarization; equivalent circuit analysis; Cole-Cole model; Dias model; electrical double layer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jougnot, D., Ghorbani, A., Revil, A., Leroy, P., and Cosenza, P., 2010, Spectral induced polarization of partially saturated clay-rocks: a mechanistic approach, Geophysical Journal International, 180(1), 210-224.   DOI
2 Bieniawski, Z. T., and Bernede, M. J., 1979, Suggested methods for determining the uniaxial compressive strength and deformability of rock materials: Part 1. Suggested method for determining deformability of rock materials in uniaxial compression, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 16(2), 138-140.
3 Dias, C. A., 1972, Analytical model for a polarizable medium at radio and lower frequencies, Journal of Geophysical Research, 77(26), 4945-4956.   DOI
4 Dias, C. A., 2000, Developments in a model to describe lowfrequency electrical polarization of rocks, Geophysics, 65(2), 437-451.   DOI
5 Katz, E., and Willner, I., 2003, Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNASensors, and Enzyme Biosensors, Electroanalysis, 15(11), 913-947.   DOI   ScienceOn
6 Macdonald, J. R., and Johnson, W. B., 2005, Fundamentals of Impedance Spectroscopy, Impedance Spectroscopy, John Wiley & Sons, Inc., 1-26.
7 Nguyen, P. T., and Amiri, O., 2014, Study of electrical double layer effect on chloride transport in unsaturated concrete, Construction and Building Materials, 50, 492-498.   DOI
8 Niranjan, U., 2004, Simultaneous storage of medical images in the spatial and frequency domain: A comparative study, Biomedical Engineering Online, 3(17), 1-10.   DOI
9 Park, S., and Matsui, T., 1998, Basic study on resistivity of rocks, Butsuri Tansa (Geophysical Exploration), 51(3), 201-209 (in Japanese).
10 Pelton, W., Ward, S., Hallof, P., Sill, W., and Nelson, P., 1978, Mineral discrimination and removal of inductive coupling with multifrequency, Geophysics, 43(3), 588-609.   DOI   ScienceOn
11 Revil, A., and Florsch, N., 2010, Determination of permeability from spectral induced polarization in granular media, Geophysical Journal International, 181(3), 1480-1498.
12 Wynn, J. C., and Zonge, K. L., 1975, EM coupling, its intrinsic value, its removal and the cultural coupling problem, Geophysics, 40(5), 831-850.   DOI   ScienceOn
13 Schiffbauer, J., and Yossifon, G., 2014, Influence of electricdouble-layer structure on the transient response of nanochannels, Physical Review E, 89(5), 053015.   DOI
14 Zonge, K., and Wynn, J., 1975, Recent advances and applications in complex resistivity measurements, Geophysics, 40(5), 851-864.   DOI
15 Seigel, H., Nabighian, M., Parasnis, D., and Vozoff, K., 2007, The early history of the induced polarization method, The Leading Edge, 26(3), 312-321.   DOI
16 Vanhala, H., and Peltoniemi, M., 1992, Spectral IP studies of Finnish ore prospects, Geophysics, 57(12), 1545-1555.   DOI