• Title/Summary/Keyword: Engineered cementitious composites (ECC)

Search Result 38, Processing Time 0.032 seconds

Multiple cracking analysis of HTPP-ECC by digital image correlation method

  • Felekoglu, Burak;Keskinates, Muhammer
    • Computers and Concrete
    • /
    • v.17 no.6
    • /
    • pp.831-848
    • /
    • 2016
  • This study aims to characterize the multiple cracking behavior of HTPP-ECC (High tenacity polypropylene fiber reinforced engineered cementitious composites) by Digital Image Correlation (DIC) Method. Digital images have been captured from a dogbone shaped HTPP-ECC specimen exhibiting 3.1% tensile ductility under loading. Images analyzed by VIC-2D software and ${\varepsilon}_{xx}$ strain maps have been obtained. Crack widths were computed from the ${\varepsilon}_{xx}$ strain maps and crack width distributions were determined throughout the specimen. The strain values from real LVDTs were also compared with virtual LVDTs digitally attached on digital images. Results confirmed that it is possible to accurately monitor the initiation and propagation of any single crack or multiple cracks by DIC at the whole interval of testing. Although the analysis require some post-processing operations, DIC based crack analysis methodology can be used as a promising and versatile tool for quality control of HTPP-ECC and other strain hardening composites.

A Study on the Anti-Spalling Performance of High-Strength Concrete Members by covered Engineered Cementitious Composite (ECC로 피복된 고강도콘크리트 부재의 폭렬억제성능에 관한 연구)

  • Lee, Jae-Young;Kim, Jae-Hwan;Han, Byung-Chan;Park, Sun-Gyu;Kwon, Young-Jin
    • Fire Science and Engineering
    • /
    • v.22 no.4
    • /
    • pp.85-94
    • /
    • 2008
  • The purpose of this study is to obtain the fundamental fire resistance performance of engineered cementitious composites (ECC) under fire temperature in order to use the fire protection material in high-strength concrete structures. The present study conducted the experiment to simulate fire temperature by employing of ECC and investigated experimentally the explosion and cracks in heated surface of these ECC. In the experimental studies, 5 HSC specimens are being exposed to fire, in order to exami ne the influence of vari ous parameters (such as depth of layer=20, 30, 40 mm; construction method=lining and repairing type) on the fire performance of HSC structures. Employed temperature curve were ISO 834 criterion (3 hr), which are severe in various criterion of fire temperature in building structures. The numerical regressive analysis and proposed equation to calculate ambient temperature distribution is carried out and verified against the experimental data. By the use of proposed equation, the HSC members subjected to fire loads were designed and discussed.

Fiber Bridging Model Considering Probability Density Function of Fiber Inclined Angle in Engineered Cementitious Composites (보강 섬유의 배향각에 대한 확률밀도함수를 고려한 ECC내의 섬유 가교 모델)

  • Kang, Cheol-Ho;Lee, Bang-Yeun;Park, Seung-Bum;Kim, Yun-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.587-596
    • /
    • 2009
  • The fiber bridging model is the crucial factor to predict or analyze the tensile behavior of fiber reinforced cementitious composites. This paper presents the fiber bridging constitutive law considering the distribution of fiber inclined angle and the number of fibers in engineered cementitious composites. The distribution of fiber inclined angle and the number of fibers are measured and analyzed by the image processing technique. The fiber distribution are considerably different from those obtained by assuming two- or three-dimensional random distributions for the fiber inclined angle. The simulation of the uniaxial tension behavior was performed considering the distribution of fiber inclined angle and number of fibers measured by the sectional image analysis. The simulation results exhibit multiple cracking and strain hardening behavior that correspond well with test results.

Fire Resistant Performance of Anti-Spalling ECC Layers in High-Strength Concrete Structures (ECC로 피복된 고강도콘크리트의 폭렬저감 및 열적특성에 관한 실험적 연구)

  • Lee, Jae-Young;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.199-202
    • /
    • 2008
  • The purpose of this study is to obtain the fundamental fire resistance performance of engineered cementitious composites(ECC) under fire temperature in order to use the fire protection material in high-strength concrete structures. The present study conducted the experiment to simulate fire temperature by employing of ECC and investigated experimentally the explosion and cracks in heated surface of these ECC. In the experimental studies, 3 HSC specimens are being exposed to fire, in order to examine the influence of various parameters(such as depth of layer=20, 30, 40mm; construction method=lining type) on the fire performance of HSC structures. Employed temperature curve were ISO 834 criterion(3hr), which are severe in various criterion of fire temperature in building structures. The numerical regressive analysis and proposed equation to calculate ambient temperature distribution is carried out and verified against the experimental data. By the use of proposed equation, the HSC members subjected to fire loads were designed and discussed.

  • PDF

Behavior of Fire Resistance Engineered Cementitious Composites(FR-ECC) under Fire Temperature (화재 온도를 받는 고인성.고내화성 시멘트 복합체의 거동)

  • Han, Byung-Chan;Kwon, Young-Jin;Kim, Jae-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.189-197
    • /
    • 2007
  • Concrete tunnel lining must be designed to having the fireproof performance because the lining are sometimes exposed to very high temperature due to traffic accident. Such fire temperature may cause explosion of concrete, or collapse of tunnel structure. The purpose of this study is to obtain the fundamental fireproof behavior of fire resistance-engineered cementitious composites(FR-ECC) under fire temperature in order to use the fire protection material in tunnel lining system. The present study conducted the experiment to simulate fire temperature by employing 2 types of FR-ECC and investigated experimentally the explosion and cracks in heated surface of these FR-ECC. Employed temperature curve were hydro carbon(HC, ECl) criterion, which are severe in various criterion of fire temperature. The numerical analysis is carried out the nonlinear transient heat flow analysis and verified against the experimental data. The complex features of behavior in fire conditions, such as thermal expansion, plasticity, cracking or crushing, and material properties changing with temperature are considered. By the use of analytical model, the concrete tunnel subjected to fire loads were analyzed and discussed. With comparison of current concrete materials and FR-ECC, the experimental and analytical results of FR-ECC shows the better fire resistance performance than the other.

Fire Resistance Properties of High Strength Concrete Column using ECC Permanent Form (ECC 영구 거푸집을 활용한 고강도콘크리트 기둥부재의 내화특성)

  • Kim, Yong-Ro;Song, Young-Chan;Kim, Ook-Jong;Lee, Do-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.957-960
    • /
    • 2008
  • In this study, it was investigated fire resistance properties of high strength concrete column using Engineered Cementitious Composites(ECC) permanent form as a countermeasure for explosive spalling of concrete on fire. As a test result, it was appeared that ECC permanent form is available as fire resistance method of high strength concrete if it is developed manufacturing technique and scheme for application controlling heat penetration through interface of permanent form and high strength concrete, and setting up mix proportion and thickness of ECC.

  • PDF

Mechanical Properties of an ECC(Engineered Cementitious Composite) Designed Based on Micromechanical Principle (마이크로역학에 의하여 설계된 ECC (Engineered Cementitious Composite)의 역학적 특성)

  • Kim Yun-Yong;Kim Jeong-Su;Kim Hee-Sin;Ha Gee-Joo;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.709-716
    • /
    • 2005
  • The objective of this study is to develop a high ductile fiber reinforced mortar, ECC(Engineered Cementitious Composite) with using raw material commercially available in Korea. A single fiber pullout test and a wedge splitting test were employed to measure the bond properties in a matrix and the fracture toughness of mortar matrix respectively, which are used for designing mix proportion suitable for achieving strain-hardening behavior at a composite level. Test results showed that the properties tended to increase with decreasing water-cement ratio. A high ductile fiber reinforced mortar has been developed by employing micromechanics-based design procedure. Micromechanical analysis was initially peformed to properly select water-cement ratio, and then basic mixture proportion range was determined based on workability considerations, including desirable fiber dispersion without segregation. Subsequent direct tensile tests were performed on the composites with W/C's of 47.5% and 60% at 28 days that the fiber reinforced mortar exhibited high ductile uniaxial tension property, represented by a maximum strain capacity of 2.2%, which is around 100 times the strain capacity of normal concrete. Also, compressive tests were performed to examine high ductile fiber reinforced mortar under the compression. The test results showed that the measured value of compressive strength was from 26MPa to 34 MPa which comes under the strength of normal concrete at 28 days.

Diverse Application of ECC Designed with Ground Granulated Blast Furnace Slag

  • Kim, Jeong-Su;Kim, Yun-Yong;Kim, Jin-Keun
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.11-18
    • /
    • 2007
  • In the recent design of high ductile engineered cementitious composites (ECC), optimizing both processing and mechanical properties for specific applications is critical. This study employs a method to develop useful ECC produced with slag particles (slag-ECC) in the field, which possesses different fluid properties to facilitate diverse types of processing (i.e., self-consolidating or spray processing). Control of rheological modulation was regarded as a key factor to allow the performance of the desired processing while retaining the ductile material properties. To control the rheological properties of the composite, the basic slag-ECC composition was initially obtained, determined based on micromechanics and steady-state cracking theory. The stability and consequent viscosity of the suspensions were then mediated by optimizing the dosage of the chemical and mineral admixtures. The rheological properties altered through this approach were revealed to be effective in obtaining ECC-hardened properties, represented by pseudo strain-hardening behavior in uniaxial tension, allowing the readily achievement of the desired function of the fresh ECC.

Torsional Behavior of Beams Retrofitted by PVA-ECC (PVA-ECC에 의해 피복 보강된 RC보의 비틀림 거동에 대한 연구)

  • Jeong, Yeong-Seok;Kwon, Min-Ho;Seo, Hyeon-Soo;Kim, Jin-Sup;Kim, Gi-Yeong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.30-37
    • /
    • 2015
  • The need to consider torsion in the design of members of a structure has recently been increasing; therefore, many studies on torsion have been carried out. Recent research was focused on the torsional performance of concrete according to the reinforcing materials used. Of particular interest, are torsion studies of beams made of SFRC(steel fiber reinforced concrete), and there has been increasing use of SFRC at construction sites. In contrast, research on the composite PVA-ECC (polyvinyl alcohol-engineered cementitious composite) has only covered its mechanical performance, though it exhibits excellent tensile-strain performance (better than SFRC). Therefore, research on the torsion of concrete beams retrofitted using PVA-ECC is lacking. In this study, the behavior characteristics and performance of reinforced-concrete beams retrofitted by PVA-ECC was investigated experimentally. The experimental results show that the resistance to torsional cracking is increased by PVA-ECC. In addition, the strain on the rebar of the specimen was found to be reduced.

New Fire Resistant Method of Reinforced Tunnel Structures Using Engineered Cementitious Composites (터널구조물의 내화대책에 대한 ECC 적용 가능성)

  • Kim, Jung-Hee;Kwon, Young-Jin;Lee, Hye-Kyung;Kim, Jae-Jwan;Han, Byung-Chan
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.441-448
    • /
    • 2009
  • 화재에 대한 안전성 확보는 ECC 등과 같은 신소재를 실제 구조물에 적용 또는 실용화하기 위해 필요한 중요한 요소 중 하나이다. 본 논문은 터널구조물에 대한 내화대책의 일환으로써 ECC의 적용가능성을 평가하고자 하는 것을 목적으로 한다. 이를 위하여 터널구조물의 화재 온도조건인 RABT 화재온도이력곡선을 적용하여 내화성능을 실험적으로 평가하였다. 또한 비정상 온도분포해석 기법을 이용하여 이를 해석적으로 묘사 검증하였으며, 실험결과를 통해 검증된 해석기법을 이용하여 터널라이닝에 대한 열전달 해석을 수행하여 ECC의 적용가능성을 고찰하였다. 실험결과 ECC는 폭렬 및 화재상태에서의 모체콘크리트에 열화가 발생하지 않았으며, 기존 콘크리트 및 내화소재와의 상대 비교에 있어서도 가장 우수한 내화성능을 나타냈다. 이를 통하여 터널구조물의 내화대책에 있어 ECC 소재가 적용가능성이 있는 것으로 판단되었다.

  • PDF