DOI QR코드

DOI QR Code

Mechanical Properties of an ECC(Engineered Cementitious Composite) Designed Based on Micromechanical Principle

마이크로역학에 의하여 설계된 ECC (Engineered Cementitious Composite)의 역학적 특성

  • Kim Yun-Yong (Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim Jeong-Su (Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim Hee-Sin (Chungsuk Engineering, Co. LTD.,) ;
  • Ha Gee-Joo (School of Architecture, Kyungil University) ;
  • Kim Jin-Keun (Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
  • 김윤용 (한국과학기술원 건설 및 환경공학과) ;
  • 김정수 (한국과학기술원 건설 및 환경공학과) ;
  • 김희신 (청석엔지니어링) ;
  • 하기주 (경일대학교 건축학부) ;
  • 김진근 (한국과학기술원 건설 및 환경공학과)
  • Published : 2005.10.01

Abstract

The objective of this study is to develop a high ductile fiber reinforced mortar, ECC(Engineered Cementitious Composite) with using raw material commercially available in Korea. A single fiber pullout test and a wedge splitting test were employed to measure the bond properties in a matrix and the fracture toughness of mortar matrix respectively, which are used for designing mix proportion suitable for achieving strain-hardening behavior at a composite level. Test results showed that the properties tended to increase with decreasing water-cement ratio. A high ductile fiber reinforced mortar has been developed by employing micromechanics-based design procedure. Micromechanical analysis was initially peformed to properly select water-cement ratio, and then basic mixture proportion range was determined based on workability considerations, including desirable fiber dispersion without segregation. Subsequent direct tensile tests were performed on the composites with W/C's of 47.5% and 60% at 28 days that the fiber reinforced mortar exhibited high ductile uniaxial tension property, represented by a maximum strain capacity of 2.2%, which is around 100 times the strain capacity of normal concrete. Also, compressive tests were performed to examine high ductile fiber reinforced mortar under the compression. The test results showed that the measured value of compressive strength was from 26MPa to 34 MPa which comes under the strength of normal concrete at 28 days.

이 연구는 국내에서 상용 중인 재료를 이용하여 고인성 섬유복합 모르타르를 개발하고자 함에 목적이 있으며, 고인성 섬유복합 모르타르를 개발하기 위해서는 모르타르 매트릭스의 파괴역학(fracture mechanics)적 특성과 섬유-모르타르 경계 면의 마이크로역학(micromechanics)적 특성을 파악하여야 한다. 특히 시멘트계 재료(cementitious materials)의 역학적 특성에 가장 큰 영향을 미치는 물-시멘트비(water cement ratio)에 대한 연구에 초점을 맞추었으며, 3가지의 물-시멘트비에 대하여 섬유의 인발실험(fiber pullout test)과 모르타르의 쐐기쪼갬실험(wedge splitting test)을 수행하였고 이를 통하여 모르타르 매트릭스와 섬유-매트릭스 경계면(interface)의 역학적인 특성을 파악하였다. 이러한 연구에 의하여 결정된 섬유-매트릭스 경계면의 마이크로역학적 특성과 모르타르의 역학적 특성을 이용하여 물-시멘트비 범위 및 재료의 기본 배합을 제시하였고 또한 마이크로역학과 안정상태 균열이론(steady-state cracking theory)을 배경으로 하여 1축인장 하에서 인장변형률 경화거동을 나타내는 고인성 섬유복합 모르타르를 개발하였다. 개발된 재료는 1축인장 하에서 변형률 경화거동을 나타내었으며, 변형능력은 최대 2.2% 이었다. 이와 같은 높은 변형 능력은 일반 콘크리트(또는 모르타르)의 약 100배에 해당된다. 또한 압축하에서는 압축강도 이후 응력-변형률 곡선이 완만하게 감소하는 연성파괴의 형태를 나타내었으며 28일의 압축강도는 보통강도 콘크리트의 강도에 해당되는 26MPa, 34MPa인 것으로 측정되었다.

Keywords

References

  1. 김윤용, '습식스프레이공법으로 타설된 고인성 섬유보강 모르타르(ECC)의 역학적 특성과 보수 성능' 콘크리트학회 논문집, 15권 3호, 2003. 6, pp.462-469
  2. Li, V.C. and Wu, H.C., 'Conditions for pseudo strain-hardening in fiber reinforced brittle matrix composites', Journal Applied Mechanics Review, Vol.45, No.8, 1992, pp.390-398 https://doi.org/10.1115/1.3119767
  3. 김윤용, 김정수, 김희신, 김진근, 하기주, '섬유-모르타르 경계면과 모트타르의 역학적 특성에 미치는 물-시멘트비의 영향', 한국콘크리트학회 봄 학술발표회 논문집. 16권 1호, 2004. 5, pp.336-339
  4. Murakami, Y., et al., Stress intensity factors handbook, Pergamon Press, New York, 1987, pp.274-276
  5. Xu, S. and Reinhardt, H W., 'Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part III: Compact tension specimens and wedge splitting specimens', International Journal of Fracture, Vol.98, 1999, pp.179-193 https://doi.org/10.1023/A:1018788611620
  6. Fella, D. A and Naaman, A. E, 'Stress-strain properties of fiber reinforced mortar in compression', ACI Journal, Vol.82, No.4, 1985, pp.475-483
  7. Katz, A and Li, V C., 'A special technique for determining the bond strength of microfibers in cement matrix by pull-out test', journal of Material Science Letter, Vol.15, 1996, pp.1821-1823 https://doi.org/10.1007/BF00275353
  8. Kim, J. K, and Kim, Y. Y., 'Fatigue crack growth of high strength concrete in wedge splitting test', Cement and Concrete Research, Vol.29, No.5 1999, pp.705-712 https://doi.org/10.1016/S0008-8846(99)00025-3
  9. Li, V. C. Wu, C. Wang, S., Ogawa, A, and Saito, T., 'Interface Tailoring for Strain-hardening PVAECC', ACI Materials Journal, Vol.99, No.5, 2002, pp.463-472
  10. Lin, Z., Kanda, T., and Li, V.C., 'On interface property characterization and performance of fiber reinforced cementitious composites', Journal of Concrete Science and Engineering, RILEM, Vol.1, 1999, pp.173-184
  11. Kanda, T. and Li, V.C., 'A new micromechanics design theory for pseudo strain hardening cementitious composite', ASCE Journal of Engineering Mechanics, Vol.125, No.4, 1999, pp.373-381 https://doi.org/10.1061/(ASCE)0733-9399(1999)125:4(373)

Cited by

  1. A Study on Improvement of Seismic Performance of High Strength Reinforced Concrete Interior Beam-Column Joints Using High Ductile Fiber-Reinforced Mortar and Advanced Reinforcing Detailings vol.25, pp.2, 2013, https://doi.org/10.4334/JKCI.2013.25.2.233
  2. Comparison Analysis of Fiber Distribution and Workability for Amorphous Steel Fiber Reinforced Concrete vol.23, pp.4, 2014, https://doi.org/10.7844/kirr.2014.23.4.47
  3. Tension Stiffening of Reinforced High Performance Fiber Reinforced Cementitious Composites (HPFRCC) vol.22, pp.6, 2010, https://doi.org/10.4334/JKCI.2010.22.6.859
  4. Crack Control of Flexure-Dominant Reinforced Concrete Beams Repaired with Strain-Hardening Cement Composite (SHCC) Materials vol.23, pp.1, 2011, https://doi.org/10.4334/JKCI.2011.23.1.109
  5. Improvement and Evaluation of Seismic Performance of Flat Plate Slab-Column Joint Using High Ductile Fiber-Reinforced Mortar vol.24, pp.3, 2012, https://doi.org/10.4334/JKCI.2012.24.3.341
  6. Influence of Water-Binder Ratio and Expansion Admixture on Mechanical Properties of Strain-Hardening Cement-Based Composite with Hybrid Steel and Polyethylene Fibers vol.24, pp.3, 2012, https://doi.org/10.4334/JKCI.2012.24.3.233
  7. A Study on Improvement of Seismic Performance of High Strength Reinforced Concrete Interior Beam-Column Joints using High Ductile Fiber-Reinforced Mortar vol.24, pp.6, 2012, https://doi.org/10.4334/JKCI.2012.24.6.753