• 제목/요약/키워드: Engine Booming

검색결과 21건 처리시간 0.04초

능동 샤시 진동 제어가 실내 엔진 부밍 소음에 미치는 영향 (The Effect of Active Chassis Vibration Control on the Engine Booming Noise)

  • 정병보;박만복;이용욱;박영진;이종원;강구태;채창국
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.991-995
    • /
    • 2002
  • 차량 실내에서 발생하는 엔진 부밍 소음은 엔진의 진동이 샤시로 전달되어 구조 진동의 형태로 발생하는 구조소음이다. 본 연구에서는 이러한 엔진 부밍 소음과 그 원인이 되는 엔진 진동 사이의 관계를 알아보고자 엔진 마운트 중 한 위치에서 차체로 전달되는 엔진 진동을 줄일 경우 실내 엔진 부밍 소음의 변화를 고찰하였다. 이를 위하여 제어용 구동기를 제작하고 feed-forward 와 feed-back 제어기를 혼합한 hybrid 제어기를 적용하여 실차 실험을 수행하였다.

  • PDF

차량 부밍소음의 청감 변화 인지를 위한 주파수 역치 (Difference Limen for Just Noticeable Change of Booming Sensation in Frequency)

  • 신성환;이정권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.621-624
    • /
    • 2005
  • Among many auditory feelings for the vehicle interior noise, booming is considered as the most important nuisance to the passenger and developer. Because the main source of booming noise is a power train system including engine, in general, it consists of tonal components related to fundamental engine rotation and its harmonics including the firing frequency. Therefore, it is demanded to extract the effective tonal components only by using pitch extraction algorithm based on the place theory enable to find aurally relevant tonal components. However, there is a difference between booming sensation and pitch perception according to frequency change of tonal component. In this study, subjective listening test using a tracking method was performed to find the difference limen for just noticeable change of booming sensation in frequency. 20 Koreans and 10 Japanese were participated in this test and the results obtained from Koreans and Japanese were compared with each other. Finally, 5Hz was determined as the difference limen for just noticeable change of booming sensation in frequency, and by applying this value to booming analysis using pitch concept, it was confirmed that the degree of prediction of booming sensation was improved.

  • PDF

진동-음향 전달특성을 이용한 진동 및 소음원의 규명 (The source identification of noise & vibration using characteristics of vibro-acoustic transmission)

  • 오재응;김동섭;김우택;강현석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.495-499
    • /
    • 2000
  • The booming noise of a vehicle is usually caused by the vibration of the vehicle's body transmitted from the engine through the mounting system. Thus the engine mounting system must be cautiously designed to reduce the noise. Vector synthesis analysis is performed to predict the booming noise when the characteristic of the engine mounting system is changed., i.e., when magnitudes and phases of vibratory forces after the mounts are altered. To effectively use the method, the concept of 'effectiveness' is introduced to identify the contributions of each vibration sources and transmission paths to interior noise. When the magnitudes and phases of the forces due to the engine vibration are changed, the synthesized interior booming noise level is predicted by the vector synthesis diagram. Thus, the optimum characteristics of the forces are obtained through the simulations of the vector synthesis analysis. It is shown that the vector synthesis method can be used to obtain the optimum design characteristic of the mounting system to control the interior booming noise of a vehicle.

  • PDF

지게차 부밍소음 저감에 대한 연구 (Study on Reduction of Forklift's Booming Noise)

  • 박석태;김경환;이종규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1487-1492
    • /
    • 2000
  • To identify forklift's booming noise in cabin under idling engine revolution, we discussed and applied conditioned input analysis. Acceleration signals at engine mounts and front window and rear window were considered as candidate input signals and output signal was sound pressure signal at driver's ear position in cabin. To reduce the numbers of the input signals, one idea were applied; Each one input signal from each input groups was selected, respectively because input signals in the same group were highly correlated. And Hilbert transform was used to determine the ordering of three selected inputs. Partial coherence functions, multiple coherence function and conditioned spectral density functions were investigate to the effects of booming noise by partial inputs.

  • PDF

전달특성을 이용한 소음원 규명과 입력요소 변경에 의한 실내소음 저감 (The Source Identification of Noise Using Characteristics of Transmission and the Reduction of Interior Noise for Changing the Input Factor)

  • 이유엽
    • 한국소음진동공학회논문집
    • /
    • 제17권12호
    • /
    • pp.1254-1261
    • /
    • 2007
  • The structure has several types of noise and booming noise of a vehicle is usually caused by the vibration of the vehicle's body transmitted from the engine through the mounting system. Vector synthesis analysis is performed to predict the booming noise when the characteristic of the engine mounting system is changed., i.e., when magnitudes and phases of vibratory forces after the mounts are altered. To use this method effectively, the concept of Multi-dimensional-analysis and Experimental Design are introduced to identify the contributions of each vibration sources and transmission paths to interior noise. It was used 3inputs/1output system and found the magnitudes and phases of the forces for minimizing the noise. Finally, the synthesized interior booming noise level is predicted by the vector synthesis diagram. It is shown that the vector synthesis method can be used to obtain the optimum design characteristic of the mounting system to control the interior booming noise of a vehicle.

엔진 가진력의 감도해석을 이용한 차실 소음 저감에 관한 연구 (A Study on the Noise Reduction of Compartment of Vehicle Using Sensitivity Analysis of Engine Exciting Force)

  • 오재응;김태욱;송재은;이해승
    • 한국자동차공학회논문집
    • /
    • 제5권4호
    • /
    • pp.171-178
    • /
    • 1997
  • Vehicle interior noise has become increasingly important in this recent years. The noise of a vehicle is one of the important problems in a vehicle design. The interior noise is caused by various vibration sources of vehicle compartment. The booming noise of a vehicle can be significantly affected by vibrations transmitted from engine excitation forces to the vehicle body. Specially, we are interested in the state of transmission paths such as engine mounts to reduce noise in a vehicle compartment. In this paper, we have been calculated the contribution of each transmission path such as engine mounts to interior noise. To identify contribution of each input sources and transmission paths to output, the effectiveness of each input component to output is calculated. Sensitivity analysis is carried out for investigation of contribution to output due to input variations. With the simulation of magnitude and phase change of inputs using vector synthesis diagram, the trends of synthesized output vector are obtained. As a result, we suggested sensitivity analysis of vector synthesis as a technique of prediction and control for noise in a vehicle compartment.

  • PDF

RLS 알고리즘을 이용한 승용차 내 능동소음제어의 개선 (Improvement of active nose control in vehicle interior using a RLS algorithm)

  • 김영욱;이윤희;김기두
    • 전자공학회논문지S
    • /
    • 제34S권12호
    • /
    • pp.106-113
    • /
    • 1997
  • While driving, the low frequency interior noise below 200Hz causes the main component that irritates the auditory acoustic sense. But these passive control methods bring out increment in cost and weight of the vehicle and result in low efficiency. Recently, various ANC(Active Noise Control) methos to suppress the low frequency noise began to launch into application. In this study, we implemented the active noise control system for passenger vehicle to cancel the engine booming noise using DSP-based control unit, 4 micorphones, and 2 speakers. We used MEFX-LMS (Multiple Error Filtered X-Least Mean Square) algorithm since it can be easily implemented in real time. Also, MEFX-RLS algorithm was taken to enhance the suppression of the harmonic components of the engine booming noise inspite of its computational complexity. The performance of two adaptive algorithms were analyzed with experimental resutls.

  • PDF

진동 파워흐름 측정을 통한 SUV용 엔진 마운트의 에너지 전달 기여도 분석에 관한 연구 (A Study on the Transmitted Energy Contribution Analysis of SUV Engine Mount by Vibration Power Flow Measurement)

  • 김수곤;이상권;김성종
    • 한국소음진동공학회논문집
    • /
    • 제18권4호
    • /
    • pp.400-410
    • /
    • 2008
  • Reduction of structure-borne noise in the compartment of a car is an important task in automotive engineering. Many methods which analyze noise transfer path have been generally used for structure-borne noise. These methods are useful in solving particular problem but do not quantify the effectiveness of vibration isolation for each isolator of a vehicle. To quantify the effectiveness of vibration isolation, the vibrational power flow measurement has been used for a simple isolation system or a laboratory based isolation system. This paper identifies the transfer path of booming noise in a SUV. The powertrain used for test has a in-line 4cylinder engine and 5-shift auto-transmission. This powertrain is transversely supported by four isolators. We calculated the energy flow throughout four isolator by the measurement of power flow and the contribution of energy flow at each isolator.

PROCESS OF DESIGNING BODY STRUCTURES FOR THE REDUCTION OF REAR SEAT NOISE IN PASSENGER CAR

  • Kim, K.C.;Kim, C.M.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.67-73
    • /
    • 2007
  • This study analyzes the interior noise that is generated during acceleration of a passenger car in terms of car body structure and panel contribution. According to the transfer method, interior noise is classified into structure-borne noise and air-borne noise. Structure-borne noise is generated when the engine's vibration energy, an excitation source, is transferred to the car body through the engine mount and the driving system and the panel of the car body vibrates. When structure-borne noise resonates in the acoustic cavity of the car interior, acute booming noise is generated. This study describes plans for improving the car body structure and the panel form through a cause analysis of frequency ranges where the sound pressure level of the rear seat relative to the front seat is high. To this end, an analysis of the correlation between body attachment stiffness and acoustic sensitivity as well as a panel sensitive component analysis were conducted through a structural sound field coupled analysis. Through this study, via research on improving the car body structure in terms of reducing rear seat noise, stable performance improvement and light weight design before the proto-car stage can be realized. Reduction of the development period and test car stage is also anticipated.

자동차 실내에서의 엔진 소음 감쇠를 위한 실시간 능동 소음 제어 시스템의 구현 (The Implementation of the Real-Time Active Noise Control System for Attenuating the Engine Noise in a Car)

  • 권오상;차일환
    • 한국음향학회지
    • /
    • 제16권4호
    • /
    • pp.11-20
    • /
    • 1997
  • 지금까지 널리 사용된 수동 소음 제어 방법은 소리에 대한 재질 상의 특성을 이용하여 소음을 제거하는 방법으로서 무게와 부피를 증가시키고 소음의 고주파 성분에 대해서만 효율적인 성능을 발휘하는 단점을 가지고 있다. 이에 반해 최근에 발전된 능동 소음 제어 방법은 무게와 부피를 감소시키고 저주파 소음에 대한 성능이 우수하다는 장점을 가지고 있다. 본 논문에서는 능동 소음 제어의 원리를 디지털 신호 처리 기술을 이용하여 자동차 실내에서의 엔진 부밍 소음(Engine Booming Noise)을 감쇠시키는 실시간 능동 소음 제어 시스템을 구현하였다. 능동 제어를 위한 적응 알고리듬으로는 다채널 Filtered-x LMS 알고리듬을 사용하였으며 이를 위해 Motorola사의 디지털 신호처리 프로세서인 DSP560001을 제어기로 사용하여 적응 알고리듬을 실시간으로 구현하였다. 능동 소음 제어 시스템을 실제로 자동차에 장착하여 RPM에 따른 엔진 소음의 감쇠 성능을 평가한 결과 자동차 실내의 모든 위치에서 소음 감쇠 효과를 얻었으며 특정 주파수에서 20 dB 이상의 소음 감쇠 성능과 전체적으로 15 dB 이상의 소음 감쇠 성능을 확인할 수 있었다.

  • PDF