• Title/Summary/Keyword: Energy-Regenerative System

Search Result 209, Processing Time 0.027 seconds

Performance Simulation of a Ventilation System Adopting a Regenerative Evaporative Cooler (재생증발식 냉방기를 이용한 환기 냉방시스템의 성능해석)

  • Chang, Y.S.;Lee, D.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.1
    • /
    • pp.8-15
    • /
    • 2011
  • Cooling load reduction was analysed of a ventilation system adopting a regenerative evaporative cooler. The regenerative evaporative cooler is a kind of indirect evaporative cooler which cools the air down to its inlet dewpoint temperature in principle without change in the humidity ratio. The regenerative evaporative cooler was found able to cool the ventilation air to $18{\sim}21^{\circ}C$ when the outdoor condition ranges $25{\sim}35^{\circ}C$ and 0.01~0.02 kg/kg. When the outdoor humidity ratio is lower than 0.018 kg/kg, the regenerative evaporative cooler was found to provide cooling performance enough to compensate the ventilation load completely and to supply additional cooling as well. Energy simulation during the summer was carried out for a typical office building with the ventilation system using the regenerative evaporative cooler. The results showed that the seasonal cooling load can be reduced by about 40% by applying the regenerative evaporative cooler as a ventilation conditioner. The reduction was found to increase as the outdoor temperature increases and the outdoor humidity ratio decreases.

Development Status of the Regeneration Inverter System for Energy Saving in DC Electric Railway (전철시스템의 에너지절약 회생인버터시스템 개발 현황)

  • Kim, Yong-Ki;Han, Moon-Seob;Yang, Young-Chul;Jang, Su-Jin
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1473-1478
    • /
    • 2007
  • In the respect of energy saving and reusing, it is necessary to reduce greenhouse gases emission and to enhance the operation efficiency in electric railway system. Recently, as the power electronics technologies are advanced, some countries have focused on the regenerative inverter to use regeneration energy on each line. When the electric tractions are stopped or slowed down, it is useful to supply the surplus energy to the power source by regenerative system, which increases its energy efficiency. Also, the generated energy can be supply to other tractions or equipments inside traction. Thus, it may help reduce construction cost of additional power plants. The purpose of this study is to describe the development status of the regenerative inverter system which suppress extra DC-line voltage and regenerate the energy instead of using a resister.

  • PDF

Dynamic Analysis on the Tail Gate System for Vehicle with the Energy Regenerative Brake of Hydraulic Driven Systems (유압 구동계 에너지 재생 브레이크를 적용한 자동차 테일게이트 개폐장치에 대한 동특성 해석)

  • Choi, Soon-Woo;Huh, Jun-Young
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.2
    • /
    • pp.19-26
    • /
    • 2010
  • The typical trunk lid system for vehicle is composed of a hinge having 4-bar link and gas lifter. Here, the energy regenerative brake of hydraulic driven systems is applied to the tail gate system for vehicle and removed the gas lifter. The new tail gate system is composed of a hydraulic pump by electric motor, a hydraulic motor, four check valves, an accumulator, a relief valve and a directional control valve. The dynamic characteristics of the hydraulic motor system, such as the surge pressure and response time, are investigated in both brake action and acceleration action. The capacity selection method of accumulator by mathematical model is based upon trial and error approach and computer simulation by AMEsim software is carried out.

  • PDF

A Study on the Energy Saving Strategy in Electric Railway System (직류 전기철도 에너지 절감방안 연구)

  • Choi Byung-Woon;Chang Sang-Hoon;Kim Hak-Ryun
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.676-681
    • /
    • 2005
  • The regenerative braked cars are being introduced in DC electric railway for energy saving. There has been a recent tendency for DC traction substation with regenerative inverter to increase in number. This is strongly related to the desire for effective utilization of electric power regenerated by DC electric cars and to the aim ensuring stable operation of regenerative braking system. The regenerative inverters DC power feed back from a generative car into AC power at a substation and supplies it to distribution lines. This paper suggest the result of characteristic analysis and capacity simulation. economical analysis in the regenerative inverter system.

  • PDF

Electric Power Loss Comparison Study for Regenerative Utilization Technologies in DC Electric Railway Systems (철도차량 회생에너지 활용기술별 가선 손실 저감 효과 비교 분석 연구)

  • Lee, Hansang;Kim, Jinhak;Kim, Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1597-1598
    • /
    • 2015
  • Regenerative power utilization is one of the most interesting issue in electric railway systems. Generally, technologies to utilize regenerative power from railway vehicles are railway substation with regenerative inverter, on-station energy storage systems, and on-board energy storage systems. In this paper, the electric power loss for those technologies is calculated and compared using DC electric railway system analysis algorithm.

  • PDF

Performance Analysis for Regenerative Energy Storage System in Kyoung-bu High Speed Railway (경부고속철도 회생 에너지 저장시스템 성능 분석)

  • Jang, Min-Ju;Jeon, Yong-Joo;Lho, Young Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1391-1397
    • /
    • 2015
  • Recently, various researches are conducted in the application of regenerative energy produced during the operation of an electric locomotive. Regenerative energy is produced by a generator in the brake procedure. The generator is operated by kinetic energy of an electric railroad using an electric motor. The process of producing regenerative energy varies with the current type of a railroad and its running condition. The quality of electric power can be improved and electric energy can be utilized effectively, especially in the use of an energy storage system (ESS). Thus, it is necessary to apply ESS into AC section and high speed railway. This study analyses the composition of the regenerative ESS equipment installed in Yong-Jeong sectioning post, operational principle, charge and discharge algorithm and energy efficiency. The analysis shows that CO2 emissions can be reduced about 0.5 ton per a day. In addition, ESS helps saving the energy and the compensation of the voltage drop caused by the operation of high speed train when it is installed at the end of the feeder section. The number of high speed train will be increased continuously related to the electrification rate. Therefore, applying the ESS to high speed railway is expected to solve the instability of the feeder voltage and the equipment capacity problem caused by the high speed trains.

Effects of Individual Components on the System Performance in a Desiccant Cooling System (제습냉방시스템에서 요소성능이 시스템성능에 미치는 영향)

  • Chang, Young-Soo;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.10
    • /
    • pp.687-694
    • /
    • 2007
  • Cycle simulation is peformed for two types of the desiccant cooling system incorporating a regenerative evaporative cooler. The cooling capacity and COP are evaluated at various effectiveness values of the regenerative evaporative cooler, the desiccant rotor and the sensible heat exchanger. As either of the effectiveness of the regenerative evaporative cooler or the humidity effectiveness of the desiccant rotor increases, both the cooling capacity and COP increase, but the enthalpy leak ratio gives the opposite effect on the system performance. It is found that COP of cycle A mainly depends on the humidity effectiveness of the desiccant rotor, while for cycle B enthalpy leak ratio of desiccant rotor has the major impact on COP. The effect of the sensible heat exchanger on the cooling capacity is small about 1/10 compared with those of other components.

Full Electric Vehicle Power System simulation with regenerative braking (회생 제동을 사용하는 전기자동차 시스템 구성 설계)

  • Jin, Young-Goun;Kim, Eou-Jung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.365-368
    • /
    • 2010
  • Full Electric Vehicle needs regenerative braking system by it's limitation of energy storage capacity. In this study, we suggest the system trade-off strategy between regenerative braking system with ultra capacitor and vichile enegry efficency. Simulation with the UDDS scheduling show the relations of energy storage sizing, efficiency of regenerative braking system and ultra capacitor sizing.

  • PDF

A Study on the Design of the Flywheel Energy Storage Device to Store the Regenerative Energy (회생에너지 저장용 플라이휠 에너지 저장 장치 설계에 관한 연구)

  • Lee, Jun-Ho;Park, Chan-Bae;Lee, Byeong-Song
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.1045-1052
    • /
    • 2013
  • In this study we deal with design procedures for the flywheel energy storage system that has the capacity to store the regenerative energy produced from the railway vehicles. The flywheel energy storage system (FESS) stores the regenerative electrical energy into the high speed rotational flywheel, by conversion the electrical energy into the mechanical rotational energy. Thus the FESS is composed of the energy conversion components, such as the motor and generator, mechanical support components, such as the rotational rotor, the magnetic bearings to support the rotor, and the digital controller to control the air gap between the rotor and the magnetic bearings. In this paper the design procedures for the rotor operating at the rigid mode and the magnetic bearings to support the rotational rotor without contact are presented.

Study on Regenerative Energy Storage System in K-AGT Test Track (경량전철 시험선에서의 에너지저장시스템 연구)

  • Cho, Hong-Shik;Ryu, Sang-Hwan;Hwang, Hyeon-Chyeol;Lee, An-Ho;Kim, Gil-Dong;Lee, Han-Min
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.208-210
    • /
    • 2008
  • LRT System Application Project is performed for the purpose of technical advancement and stabilization of K-AGT system from the viewpoint of practical use and commercialization. For those purpose, the performance test and evaluation procedure for K-AGT signaling system are developed, and the scheme of verifying the performance and function of signaling system under multi-train and driverless control environment is being conducted. For the multi-train operation in K-AGT test track, we applied the regenerative energy storage system in addition to the existing electric facilities. This paper present the design, manufacturing, and testing results of regenerative energy storage system.

  • PDF