• Title/Summary/Keyword: Energy structure

Search Result 7,957, Processing Time 0.055 seconds

Characterization on the Behavior of Heavy Metals and Arsenic in the Weathered Tailings of Songcheon Mine (송천광산의 풍화광미 내 중금속 및 비소 거동 특성)

  • Lee, Woo-Chun;Kim, Young-Ho;Cho, Hyen-Goo;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.125-139
    • /
    • 2010
  • Behavior of heavy metals and arsenic in the tailings of Songcheon Au-Ag mine was characterized via both mineralogical and geochemical methods. Mineral composition of the tailings was investigated by X-ray diffractometry, energy-dispersive spectroscopy, and electron probe micro-analyzer (EPMA) and total concentrations of heavy metals and arsenic and their chemical forms were analyzed by total digestion of aqua regia and sequential extraction method, respectively. The results of mineralogical study indicate that the tailings included mineral particles of resinous shape mainly consisting of galena, sphalerite, pyrite, quartz, and scorodite, and specifically socordite was identified in the form of matrix. EPMA quantitative analyses were performed to evaluate the weatherability of each mineral, and the results suggest that it decreased in the sequence of arsenopyrite > galena > sphalerite > pyrite. The weathering pattern of galena was observed to show distinctive zonal structure consisting of secondary minerals such as anglesite and beudantite. In addition, almost all of arsenopyrite has been altered to scorodite existing asmatrix and galena, sphalerite, and pyrite which have lower weatherability than arsenopyrite were identified within the matrix of scorodite. During the process of alteration of arsenopyrite into scorodite, it is likely that a portion of arsenic was lixiviated and caused a great deal of detrimental effects to surrounding environment. The results of EPMA quantitative analyses verify that the stability of scorodite was relatively high and this stable scorodite has restrained the weathering of other primary minerals within tailings as a result of its coating of mineral surfaces. For this reason, Songcheon tailings show the characteristics of the first weathering stage, although they have been exposed to the surface environment for a long time. Based on the overall results of mineralogical and geochemical studies undertaken in this research, if the tailings are kept to be exposed to the surface environment and the weathering process is continuous, not only hazardous heavy metals, such as lead and arsenic seem to be significantly leached out because their larger portions are being partitioned in weakly-bound (highly-mobile) fractions, but the potential of arsenic leaching is likely to be high as the stability of scorodite is gradually decreased. Consequently, it is speculated that the environmental hazard of Songcheon mine is significantly high.

Remediation of Heavy Metal Contaminated Groundwater by Using the Biocarrier with Dead Bacillus sp. B1 and Polysulfone (Bacillus sp. B1 사균과 Polysulfone으로 이루어진 미생물 담체를 이용한 중금속 오염 지하수 정화)

  • Lee, Min-Hee;Lee, Ji-Young;Wang, Soo-Kyun
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.555-564
    • /
    • 2010
  • Remediation process by using the bio-carrier (beads) with dead Bacillus sp. B1 and polysulfone was investigated for heavy metal contaminated groundwater. Sorption batch experiments using the bio-carrier were performed to quantify the heavy metal removal efficiencies from the contaminated solution. The analyses using SEM/EDS and TEM for the structure and the characteristic of precipitates on/inside the beads were also conducted to understand the sorption mechanism by the bio-carrier. Various amounts of freeze-dried dead Bacillus sp. B1 were mixed with polysulfone + DMF(N,N-dimethylformamide) solution to produce the bio-carrier (beads; less than 2mm in diameter) and 5% of Bacillus sp. B1 in the bio-carrier was optimal for Pb removal in the solution. The removal efficiency ratings of the bio-carrier for Pb, Cu and Cd were greater than 80% after adding 2g of bio-carrier in 50ml of aqueous solution (<10mg/L of each heavy metal concentration). Reaction time of the bio-carrier was very fast and most of the sorption reaction for heavy metals were completed within few hours. Batch experiments were duplicated at various pH conditions of aqueous solutions and Cu and Pb removal efficiencies highly maintained at wide pH ranges (pH 2-12), suggesting that the bio-carrier can be useful to clean up the acidic waste water such as AMD. From SEM/EDS and TEM analyses, it was observed that the bio-carrier was spherical shape and was overlapped by many porous layers. During the sorption experiment, Pb was crystallized on the surface of porous layers and also was mainly concentrated at the boundary of Bacillus sp. B1 stroma and polysulfone substrate, showing that the main mechanism of the bio-carrier to remove heavy metals is the sorption on/inside of the bio-carriers and the bio-carriers are excellent biosorbents for the removal of heavy metal ions from groundwater.

A study on design process for public space by users behavioral characteristics (이용자 행태 특성에 의한 공용공간의 디자인 프로세스 연구)

  • 김개천;김범중
    • Archives of design research
    • /
    • v.17 no.1
    • /
    • pp.89-98
    • /
    • 2004
  • A systemic approach to behavior on the basis of human psychology is needed for behavior-centered space design. Also, the recognition that human and environment, in all, have complementarity is needed- human and space shall be understood as a general phenomenon, supposing interaction. Design of behavior-oriented space means configuration and coordination of physical subjects as well as understanding, analysis and reflection of psychological and behavioral phenomena. It is analysis of a private individual as well as understanding of interaction between human groups, as well. In respect of space recognition, analysis not on material movement but on energy circulation and variable is important. It means that the understanding of user's behavior and psychology does not orient reasonable purpose just for convenience. That is, such understanding intends to understand behavioral patterns and psychological phenomena between space and human beyond the decomposition of structure of human and space into physical elements and the design based on standardized data. Thereby, more human-oriented space design might be implemented by the understanding of behavioral essence. Also, a user-centered design process from another viewpoint might be created, and the general amenity among man, space and environment - better environmental quality - might be produced. For this, the consciousness of human activity that is, activity system shall be ahead of it, and the approaches for design shall be implemented into a process not in predictive ideas but in semi-scientific system. On the basis of the above view, this study was attempted to investigate the orientation of design to recognize space as another life, and explore a process where it is drawn into a design language on the basis of human behavior. If the essence of space behavior and the activity system are analyzed through user observation and it is reflected upon a space design program and then developed into a formative language, a new design process on human and environment might be produced. In conclusion, the reflection of user's behavior and psychology into design, contrary to existing public space design based on physical data, can orient quality improvement of human life and ultimately be helpful to the proposition, 'humanization of space'.

  • PDF

Analysis of Productivity in Rice Plant -IV. Sink-filling rate and sink-source relation (벼의 생산력 분석(分析) -IV. 수기(受器)의 충전속도(充塡速度)와 수기(受器)-급기(給器) 관계(關係))

  • Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.2
    • /
    • pp.95-105
    • /
    • 1973
  • Sink (grain)-filling rates of IR667 line (Suwon 213 and 214) and local leading varieties (Jinheung and Paldal) were investigated in relation to sink-source ratio, sink-source distance, forms of photosynthates, and weather factors. The results are as follows. 1. IR667 line have higher maximum filling rate (g. grain/day. ear) and shorter duration to reach maximum filling rate than local varieties. The curve pattern of sink-filling rate was high and steep type in IR667 line and low and broad type in local varieties. 2. Weather factors seem to give little effect on the curve pattern of sink-filling rate. 3. The functional sink-source distance (actual sink-source distance multiplied by the contribution rate of leaf for grain production) was shorter in upper leaves (flag and 2nd leaf) for IR667 line, the upper leaf-dependent type in grain production, and was longer in lower leaves (3rd and 4th) for local varieties, the lower leaf-dependent type. Specially short first internode from top may contribute to the upper leaf depencency of IR667 line. 4. According to free sugar-starch ratio (sugar/starch) in the culm and leaf sheath IR667 line could be classified as the high sugar type and the local varieties as the high starch type. The ratio of transportable form (sugar) to non transportable photosynthate (starch) seems to relate with sink-filling rate. And high sugar type is expected to have higher efficiency for grain production in view of energy balance. 5. A hypothesis that the higher in the uniformity within the series of productive structure the more efficient in grain production is proposed and discussed in relation to productivity. 6. According to the pattern of percent nutrient retention of each leaf blade IR667 showed the central retention type and Jinheung showed the apical retention type and each retention type appears to be a cause of each canopy conservation pattern. 7. From the content and percent distribution of nutrient in various organ IR667 could be classified as the leaf sheath dominant type and Jinheung as the leaf blade dominant type. 8. The fact that the greater the percent translocation of nutrient into grain the greater the percent nutrient retention in leaf blade was held between nitrogen and phosphorus within a variety and between varieties within a nutrient (N, P or K).

  • PDF

A Study of Properties and Coating Natural Mineral Pumice Powder of in Korea (한국산 천연 광물 부석 파우더 코팅 및 특성에 관한 연구)

  • Kim, In-Young;Noh, Ji-Min;Nam, Eun-Hee;Shin, Moon-Sam
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.498-506
    • /
    • 2019
  • This study is based on a coating method that provides utilization value as a micronised powder for cosmetic raw materials using natural minerals buried in Bonghwa, Gyeongsangbuk-do in Korea. The mineral powder name is called Buseok, and chemical name is pumice powder. The results of a study on the efficacy of cosmetics are reported by the development of particulate powder to assess the performance of this powder. First of all, in order to coat the surface of this powder with oil, aluminum hydroxide was coated on the particulate surface and then coated with alkylsilan. In addition, it was coated with vegetable oil to prevent condensation of the powder and increase the dispersion in the oil phase. First; the particle size of pumice powder was from 10 to 50mm having porous holes on the surface of the particles. Second; The components of this powder contained $SiO_2$, $Al_2O_3$, $Fe_2O_3$, MgO, CaO, $K_2O_2$, $Na_2O$, $TiO_2$, $TiO_2$, MnO, $Cr_2O_3$, $V_2O_5$. Third: The particles of this powder have a planetary structure and are reddish-brown with porosity through SEM and TEM analysis. Fourth; the far-infrared radiation rate of this parabolic powder was $0.924{\mu}m$, and the radiative energy was $3.72{\times}102W/m^2$ and ${\mu}m$. In addition, the anion emission is 128 ION/cc, which shows that the coating remains unchanged. Based on these results, it is expected to be widely applied to basic cosmetics such as BB cream, cushion foundation, powderfect, and other color-coordinated cosmetics, sunblock cream, wash-off massage pack as an application of cosmetics. (Small and Medium Business Administration: S2601385)

A review on the design requirement of temperature in high-level nuclear waste disposal system: based on bentonite buffer (고준위폐기물처분시스템 설계 제한온도 설정에 관한 기술현황 분석: 벤토나이트 완충재를 중심으로)

  • Kim, Jin-Seop;Cho, Won-Jin;Park, Seunghun;Kim, Geon-Young;Baik, Min-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.587-609
    • /
    • 2019
  • Short-and long-term stabilities of bentonite, favored material as buffer in geological repositories for high-level waste were reviewed in this paper in addition to alternative design concepts of buffer to mitigate the thermal load from decay heat of SF (Spent Fuel) and further increase the disposal efficiency. It is generally reported that the irreversible changes in structure, hydraulic behavior, and swelling capacity are produced due to temperature increase and vapor flow between $150{\sim}250^{\circ}C$. Provided that the maximum temperature of bentonite is less than $150^{\circ}C$, however, the effects of temperature on the material, structural, and mineralogical stability seems to be minor. The maximum temperature in disposal system will constrain and determine the amount of waste to be disposed per unit area and be regarded as an important design parameter influencing the availability of disposal site. Thus, it is necessary to identify the effects of high temperature on the performance of buffer and allow for the thermal constraint greater than $100^{\circ}C$. In addition, the development of high-performance EBS (Engineered Barrier System) such as composite bentonite buffer mixed with graphite or silica and multi-layered buffer (i.e., highly thermal-conductive layer or insulating layer) should be taken into account to enhance the disposal efficiency in parallel with the development of multilayer repository. This will contribute to increase of reliability and securing the acceptance of the people with regard to a high-level waste disposal.

The Effects of Experimental Warming on Seed Germination and Growth of Two Oak Species (Quercus mongolica and Q. serrata) (온난화 처리가 신갈나무(Quercus mongolica)와 졸참나무(Q. serrate)의 종자발아와 생장에 미치는 영향)

  • Park, Sung-ae;Kim, Taekyu;Shim, Kyuyoung;Kong, Hak-Yang;Yang, Byeong-Gug;Suh, Sanguk;Lee, Chang Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.3
    • /
    • pp.210-220
    • /
    • 2019
  • Population growth and the increase of energy consumption due to civilization caused global warming. Temperature on the Earth rose about $0.7^{\circ}C$ for the last 100 years, the rate is accelerated since 2000. Temperature is a factor, which determines physiological action, growth and development, survival, etc. of the plant together with light intensity and precipitation. Therefore, it is expected that global warming would affect broadly geographic distribution of the plant as well as structure and function ecosystem. In order to understand the effect of global warming on the ecosystem, a study about the effect of temperature rise on germination and growth in the plant is required necessarily. This study was carried out to investigate the effects of experimental warming on the germination and growth of two oak species(Quercus mongolica and Q. serrata) in temperature gradient chamber(TGC). This study was conducted in control, medium warming treatment($+1.7^{\circ}C$; Tm), and high warming treatment ($+3.2^{\circ}C$; Th) conditions. The final germination percentage, mean germination time and germination rate of two oak species increased by the warming treatment, and the increase in Q. serrata was higher than that in Q. mongolica. Root collar diameter, seedling height, leaf dry weight, stem dry weight, root dry weight, and total biomass were the highest in Tm treatment. Butthey were not significantly different in the Th treatment. In the Th treatment, Q. serrata had significantly higher H/D ratio, S/R ratio, and low root mass ratio (RMR) compared with control plot. Q. mongolica had lower RMR and higher S/R ratio in the Tm and Th treatments compared with control plot. Therefore, growth of Q. mongolica are expected to be more vulnerable to warming than that of Q. serrata. The main findings of this study, species-specific responses to experimental warming, could be applied to predict ecosystem changes from global warming. From the result of this study, we could deduce that temperature rise would increase germination of Q. serrata and Q. mongolica and consequently contribute to increase establishment rate in the early growth stage of the plants. But we have to consider diverse variables to understand properly the effects that global warming influences germination in natural condition. Treatment of global warming in the medium level increased the growth and the biomass of both Q. serrata and Q. mongolica. But the result of treatment in the high level showed different aspects. In particular, Q. mongolica, which grows in cooler zones of higher elevation on mountains or northward in latitude, responded more sensitively. Synthesized the results mentioned above, continuous global warming would function in stable establishment of both plants unfavorably. Compared the responses of both sample plants on temperature rise, Q. serrata increased germination rate more than Q. mongolica and Q. mongolica responded more sensitively than Q. serrata in biomass allocation with the increase of temperature. It was estimated that these results would due to a difference of microclimate originated from the spatial distribution of both plants.

Industrial Policy as a Development Strategy: Cuba' s Experience and Policy Implications (개발전략으로서 산업정책: 쿠바의 경험과 정책적 시사점)

  • Cin, Beom Cheol
    • International Area Studies Review
    • /
    • v.22 no.3
    • /
    • pp.3-27
    • /
    • 2018
  • This paper analyzes Cuba's market-oriented reforms to alleviate essential problems with socialist countries such as soft budget constraints and incentive problems. It also discuss about effectiveness of industrial policy as a development strategy. The soft budget constraints and incentive problems resulted in the collapse of Soviet bloc and COMECON in early 1990s. After the collapse, Cuban economy suffered a steep dive, and national income tumbling down rapidly. Cuban faced serious shortages of food, gasoline, and other basic necessities of life. To halt and partially reverse economic downturn and dire austerity in the 1990's, the Cuban government made some partial reforms to the inherited Soviet system of cental planningand faced severe shortage in food, energy, and daily necessities. In response to the economic crisis. Cuba introduced economic reforms and implemented industrial policy as a development strategy as long as Cuba maintained a strong socialist country. Cuban government established the economic free zone law and attempted to induce foreign direct investment by implementing export-led industrial policy. Fiedel Castro approved the Law No. 165 "Free Zones and Industrial Parks", in 1996. However, Cuba's ESZ strategy seems to have failed because of the U.S. sanctions, but also because of Cuba's own policies, which do not allow foreign investors to hire workers directly and impose a high implicit tax on wages. By limiting advanced techniques of personnel and organization management, indirect employment can result in lowering work efforts and productivity of workers, and aggravating production efficiency in the ESZs. Another reason to fail comes from the double wage structure due to the double monetary-exchange rate system. Most of the high non-wage costs result from the double exchange rate system. Due to Cuba's imbalanced industry and production structures, concentrated labor force, and urbanization and centralization of agriculture production, the industrial transformation development model suggested by Lewis has not been successful unlike other Asian agriculture-led development model. Cuba has to overcome many difficulties in implementing industrial policy as a development strategy.

Influences of the Composition on Spectroscopic Characteristics of AlxGa1-xN Thin Films (AlxGa1-xN 박막의 조성이 분광학적 특성에 미치는 영향)

  • Kim, Dae Jung;Kim, Bong Jin;Kim, Duk Hyeon;Lee, Jong Won
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1281-1287
    • /
    • 2018
  • In this study, $Al_xGa_{1-x}N$ films were grown on (0001) sapphire substrates by using metal-organic chemical vapor deposition (MOCVD). The crystallinity of the grown films was examined with X-ray diffraction (XRD) patterns. The surfaces and the chemical properties of the $Al_xGa_{1-x}N$ films were investigated using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively. The optical properties of the $Al_xGa_{1-x}N$ film were studied in a wide photon energy range between 2.0 ~ 8.7 eV by using spectroscopic ellipsometry (SE) at room temperature. The data obtained by using SE were analyzed to find the critical points of the pseudodielectric function spectra, $<{\varepsilon}(E)>=<{\varepsilon}_1(E)>+i<{\varepsilon}_2(E)>$. In addition, the second derivative spectra, $d^2<{\varepsilon}(E)>/dE^2$, of the pseudodielectric function for the $Al_xGa_{1-x}N$ films were numerically calculated to determine the critical points (CPs), such as the $E_0$, $E_1$, and $E_2$ structure. For the four samples (x = 0.18, 0.21, 0.25, 0.29) between a composition of x = 0.18 and x = 0.29, changes in the critical points (blue-shifts) with increasing Al composition at 300 K for the $Al_xGa_{1-x}N$ film were observed via ellipsometric measurements for the first time.

Study on Ti-doped LiNi0.6Co0.2Mn0.2O2 Cathode Materials for High Stability Lithium Ion Batteries (고안정성 리튬이온전지 양극활물질용 Ti 치환형 LiNi0.6Co0.2Mn0.2O2 연구)

  • Jeon, Young Hee;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.120-132
    • /
    • 2021
  • Although the development of high-Nickel is being actively carried out to solve the capacity limitation and the high price of raw cobalt due to the limitation of high voltage use of the existing LiCoO2, the deterioration of the battery characteristics due to the decrease in structural stability and increase of the Ni content. It is an important cause of delaying commercialization. Therefore, in order to increase the high stability of the Ni-rich ternary cathod material LiNi0.6Co0.2Mn0.2O2, precursor Ni0.6Co0.2Mn0.2-x(OH)2/xTiO2 was prepared using a nanosized TiO2 suspension type source for uniform Ti substitution in the precursor. It was mixed with Li2CO3, and after heating, the cathode active material LiNi0.6Co0.2Mn0.2-xTixO2 was synthesized, and the physical properties according to the Ti content were compared. Through FE-SEM and EDS mapping analysis, it was confirmed that a positive electrode active material having a uniform particle size was prepared through Ti-substituted spherical precursor and Particle Size Analyzer and internal density and strength were increased, XRD structure analysis and ICP-MS quantitative analysis confirmed that the capacity was effectively maintained even when the Ti-substituted positive electrode active material was manufactured and charging and discharging were continued at high temperature and high voltage.