• 제목/요약/키워드: Energy stability

검색결과 3,232건 처리시간 0.032초

이동로봇의 횡방향 안정성 증대를 위한 기구 (Design of a Mechanism to Increase Lateral Stability of Mobile Robot)

  • 정상국;최용제
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1148-1153
    • /
    • 2004
  • This paper presents the mechanism to increase lateral stability of a mobile robot using an energy stability margin theory. Previous measure of stability used in a wheeled mobile robot has been based on a static stability margin. However, the static stability margin is independent of the height of the robot and does not provide sufficient measure for the amount of stability when the terrain is not a horizontal plane. In this work, the energy stability margin theory, which is dependent on robot's height is used to develop a 2 dof mechanism to increase lateral stability. This proposed mechanism shifts the center of gravity of the robot to the point where the energy stability margin is maximized and overall stability of the robot equipped with this mechanism will be increased.

  • PDF

에너지 안정여유도를 이용한 사족 보행 로봇의 내고장성 걸음새 (Designing Fault-Tolerant Gaits for Quadruped Robots Using Energy Stability Margins)

  • 양정민
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권7호
    • /
    • pp.319-326
    • /
    • 2006
  • This paper proposes a novel fault-tolerant gait for Quadruped robots using energy stability margins. The previously developed fault-tolerant gaits for quadruped robots have a drawback of having marginal stability margin, which may lead to tumbling. In the process of tumbling, the potential energy of the center of gravity goes through a maximum. The larger the difference between the potential energy of the center of gravity of the initial position and that of this maximum, the less the robot tumbles. Hence this difference of potential energy, dubbed as Energy Stability Margin (ESM), can be regarded as the stability margin. In this paper, a novel fault-tolerant gait is presented which gives positive ESM to a quadruped robot suffering from a locked joint failure. Positive ESM is obtained by adjusting foot positions between leg swing sequences. The advantage of the proposed fault-tolerant gait is demonstrated in a case study where a quadruped robot with a failed leg walks on a even slope.

Stochastic Stability Analysis of the Power System Incorporating Wind Power using Measurement Wind Data

  • Parinya, Panom;Sangswang, Anawach;Kirtikara, Krissanapong;Chenvidhya, Dhirayut
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1110-1122
    • /
    • 2018
  • This paper proposes an alternative method to evaluate the effect of wind power to the power system stability with small disturbance. Alternatively, available techniques for stability analysis of a power system based on deterministic methods are less accurate for high penetration of wind power. Numerical simulations of random behaviors are computationally expensive. A stochastic stability index (SSI) is proposed for the power system stability evaluation based on the theory of stochastic stability and energy function, specifically the stochastic derivative of the relative well-defined energy function and the critical energy. The SSI is implemented on the modified nine-bus system including wind turbines under different conditions. A doubly-fed induction generator (DFIG) wind turbine is characterized and modeled using measured wind data from several sites in Thailand. Each of the obtained wind power data is analyzed. The wind power effect is modeled considering the aggregated effect of wind turbines. With the proposed method, the system behavior is properly predicted and the stability is quantitatively evaluated with less computational effort compared with conventional numerical simulation methods.

Underwater Stability of Surface Chemistry Modified Superhydrophobic WOx Nanowire Arrays

  • Lee, Junghan;Yong, Kijung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.357.1-357.1
    • /
    • 2014
  • Superhydrophobic WOx nanowire (NW) arrays were fabricated using a thermal evaporation and surface chemistry modification methods by self-assembled monolayer (SAM). As-prepared non-wetting WOx NWs surface shows water contact angle of $163.2^{\circ}$ and has reliable stability in underwater conditions. Hence the superhydrophobic WOx NWs surface exhibits silvery surface by total reflection of water layer and air interlayer. The stability analysus of underwater superhydrophobicity of WOx NWs arrays was conducted by changing hydrostatic pressure and surface energy of WOx NWs arrays. The stability of superhydrophobicity in underwater conditions decreased exponentially as hydrostatic pressure applied to the substrates increased3. In addition, as surface energy decreased, the underwater stability of superhydrophobic surface increased sharply. Specifically, sueprhydrophobic stability increased exponentially as surface energy of WOx NWs arrays was decreased. Based on these results, the models for explaining tendencies of superhydrophobic stability underwater resulting from hydrostatic pressure and surface energy were designed. The combination of fugacity and Laplace pressure explained this exponential decay of stability according to hydrostatic pressure and surface energy. This study on fabrication and modeling of underwater stability of superhydrophobic W18O49 NW arrays will help in designing highly stable superhydrophobic surfaces and broadening fields of superhydrophobic applications even submerged underwater.

  • PDF

Underwater Stability of Surface Chemically Modified Superhydrophobic W18O49 Nanowire Arrays

  • Lee, Junghan;Yong, Kijung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.601-601
    • /
    • 2013
  • Superhydrophobic W18O49 nanowire (NW) arrays were synthesizedusing a thermal evaporation and surface chemistry modification methods by self-assembled monolayer (SAM). As-prepared non-wetting W18O49 NWs surface shows water contact angle of $163.2^{\circ}$ and has reliable stability in underwater conditions. Hence the superhydrophobic W18O49 NWs surface exhibits silvery surface by total reflection of water layer and air interlayer. The stability analysus of underwater superhydrophobicity of W18O49 NWs arrays was conducted by changing hydrostatic pressure and surface energy of W18O49 NWs arrays. The stability of superhydrophobicity in underwater conditions decreased exponentially as hydrostatic pressure applied to the substrates increased3. In addition, as surface energy decreased, the underwater stability of superhydrophobic surface increased sharply. Specifically, sueprhydrophobic stability increased exponentially as surface energy of W18O49 NWs arrays was decreased. Based on these results, the models for explaining tendencies of superhydrophobic stability underwater resulting from hydrostatic pressure and surface energy were designed. The combination of fugacity and Laplace pressure explained this exponential decay of stability according to hydrostatic pressure and surface energy. This study on fabrication and modeling of underwater stability of superhydrophobic W18O49 NW arrays will help in designing highly stable superhydrophobic surfaces and broadening fields of superhydrophobic applications even submerged underwater.

  • PDF

에너지함수에 의한 통합안정도해석 (Integrated Stability Analysis for Power Systems Using Energy Function)

  • 문영현;이응혁;이윤섭;오용택;김백
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.77-79
    • /
    • 1996
  • This paper presents an integrated stability analysis by the direct energy function method based on Equivalent Mechanical Model(EMM) which reflects the system behavior related to both angle and voltage stabilities. Actually, angle and voltage stability are intimately related in power system, so complete decoupling of these stability analysis is not possible in general, particularly in stressed power systems. In this paper, it is shown that a identical energy function can be used for angle and voltage stability analysis. The proposed energy function reflects the line resistances and reactive powers under the constraints of the same R/X ratio. The energy margin between UEP and SEP presents a good collapse proximity index in both types of stability analysis.

  • PDF

분산형전원 투입시 전력계통의 과도안정도 유지 한계용량 산정 (A Study on the Maximum Capacity Rate of Distributed Generation Considering Power System Transient Stability)

  • 김용하;임현성;정현성;백범민
    • 전기학회논문지
    • /
    • 제58권4호
    • /
    • pp.718-724
    • /
    • 2009
  • Recently, Increase of energy consumption is continued accordingly because economy is constant growth. so we need long term of energy supply stability and develop new energy source. The effort of environmental improvement is necessary and our country has to educe conservatory gas in these situation, our energy policy is summarized that minimizes energy consumption and uses kinds of energy source. This paper studied some effort of stability that distributed generation put in electric system through line fault, sudden load change. And then this paper calculated penetrated level of distributed generation in system transient stability.

에너지안정성 레벨을 이용한 필드로봇의 안정성에 관한 연구 (A Study of Stability for Field Robot using Energy Stability Level Method)

  • 웬치탄;레광환;정영만;양순용
    • 드라이브 ㆍ 컨트롤
    • /
    • 제11권3호
    • /
    • pp.22-30
    • /
    • 2014
  • In this research, the energy stability level method is used for examining the stable state of Field Robot under effects of swing motion, at particular postures of manipulator, and terrain conditions. The energy stability level is calculated by using the dynamic models of Field Robot, subjected to the concept of equilibrium plane and support boundary. The results, simulated by using computing program for estimating the potential overturning of Field Robot, supply useful predictions of stability analysis for designers and operators.

Stability of superconductor by integration formula

  • Seol, S.Y.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제21권3호
    • /
    • pp.1-5
    • /
    • 2019
  • The superconductor stability theories are consistently described by the integral formula. If the defined stability function is a simple decreasing function, it becomes a cryogenic stability condition. If the stability function has a maximum value and a minimum value, and the maximum value is less than 0, then it is a cold-end recovery condition. If the maximum value is more than 0, it can be shown that the unstable equilibrium temperature, that is, the MPZ (minimum propagation zone) temperature distribution can exist. The MPZ region is divided into two regions according to the current ratio. At the low current ratio, the maximum dimensionless temperature is greater than 1, and at the relatively high current ratio, the maximum dimensionless temperature is less than 1. In order to predict the minimum quench energy, the dimensionless energy was obtained for the MPZ temperature distribution. In particular, it was shown that the dimensionless energy can be obtained even when the MPZ maximum temperature is 1 or more.

STABILITY IN THE ENERGY SPACE OF THE SUM OF N PEAKONS FOR A CAMASSA-HOLM-TYPE EQUATION WITH QUARTIC NONLINEARITY

  • Liu, Xingxing
    • 대한수학회보
    • /
    • 제56권3호
    • /
    • pp.703-728
    • /
    • 2019
  • Considered herein is the orbital stability in the energy space $H^1({\mathbb{R}})$ of a decoupled sum of N peakons for a Camassa-Holm-type equation with quartic nonlinearity, which admits single peakon and multi-peakons. Based on our obtained result of the stability of a single peakon, then combining modulation argument with monotonicity of local energy $H^1$-norm, we get the stability of the sum of N peakons.