• Title/Summary/Keyword: Energy stability

Search Result 3,238, Processing Time 0.037 seconds

Effect of Cetyltrimethyl Ammonium Bromide on Foam Stability and SiO2Separation for Decontamination Foam Application (거품제염을 위한 실리카 나노입자와 CTAB (Cetyltrimethyl Ammonium Bromide)의 거품안정성 및 분리특성 평가)

  • Choi, Mansoo;Kim, Seung-Eun;Yoon, In-Ho;Jung, Chong-Hun;Choi, Wang-Kyu;Moon, Jei-Kwon;Kim, Seon-Byeong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.173-182
    • /
    • 2018
  • As part of planning for waste minimization, decontamination foam has been considered as a potential application for the cleaning of radioactive contaminant. In this study, we synthesized silica particles to improve foam stability by varying synthesis parameters. Cetyltrimethylammonium bromide (CTAB) was found to influence the stability of the decontamination foam. The reason was that higher interaction between $SiO_2$ nanoparticles and surfactant at the air-water interface in aqueous solution is beneficial for foam stability. CTAB can also be used as an additive for the aggregation of silica nanoparticles. In the separation of $SiO_2$ nanoparticles, CTAB plays a critical role in the nanoparticles flocculation because of the charge neutralization and hydrophobic effects of its hydrocarbon tails.

Consideration of Human Operators in Man-Machine Systems

  • Jin, Jae-Hyun;Ahn, Sung-Ho;Park, Byung-Suk;Yoon, Ji-Sup;Jung, Jae-Hoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2471-2474
    • /
    • 2003
  • This paper focuses on the stability and operability of a man-machine system considering a human operator. Some papers' main interest has been the stability only, but the operability such as fatigue is also the other main interest. In a man-machine system, feelings such as motional, visual, and kinesthetic are important since those enable operators to work easily or fatigue operators. A model of a man-machine system has been developed. Motional, visual, and kinesthetic feelings may be considered as feedbacked sensor signals. We also have quantified the degree of fatigue with respect to reference operation. This is a performance index to be optimized. Several methods are presented to optimize the degree of fatigue and the stability of the integrated system. Examples are presented to show that the usefulness of the proposed modeling method and fatigue mitigating algorithm.

  • PDF

A Routing Protocol for Improving Path Stability in Mobile Ad-hoc Networks (애드혹 네트워크에서 경로 안정성 향상을 위한 라우팅 프로토콜)

  • Kim, Hyungjik;Choi, Sunwoong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1561-1567
    • /
    • 2015
  • Nodes of Mobile ad-hoc network usually use the energy-limited battery. Balanced energy consumptionis important to maintain path's stability. In this paper, we focus on improving the stability of the routing path in mobile ad-hoc networks. For that purpose, we propose a new routing protocol to find the highest minimum node residual energy path among shortest paths. The largest path of minimum value of the remain energy has a longer life than other paths to improve the reliability to data-transmission. Using ns-3 simulator, we show that the proposed routing protocol can provide more long-life stable routing path than AODV and EA-AODV.

Vertical axis wind turbine types, efficiencies, and structural stability - A Review

  • Rehman, Shafiqur;Rafique, Muhammad M.;Alam, Md. Mahbub;Alhems, Luai M.
    • Wind and Structures
    • /
    • v.29 no.1
    • /
    • pp.15-32
    • /
    • 2019
  • Much advancement has been made in wind power due to modern technological developments. The wind energy technology is the world's fastest-growing energy option. More power can be generated from wind energy by the use of new design and techniques of wind energy machines. The geographical areas with suitable wind speed are more favorable and preferred for wind power deployment over other sources of energy generation. Today's wind turbines are mainly the horizontal axis wind turbines (HAWTs) and vertical axis wind turbines (VAWTs). HAWTs are commercially available in various sizes starting from a few kilowatts to multi-megawatts and are suitable for almost all applications, including both onshore and offshore deployment. On the other hand, VAWTs finds their places in small and residential wind applications. The objective of the present work is to review the technological development, available sizes, efficiencies, structural types, and structural stability of VAWTs. Structural stability and efficiencies of the VAWTS are found to be dependent on the structural shape and size.

High Temperature Characteristics of Commercially Available Anion Exchange Membrane for Alkaline Water Electrolysis (알칼리 수전해를 위한 상용 음이온교환막의 고온 특성)

  • JANG, SU-YOEN;RYU, CHEOL-HWI;HWANG, GAB-JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.330-336
    • /
    • 2022
  • In order to evaluate the possibility as a separator in alkaline water electrolysis, the high temperature characteristics were evaluated by measuring the membrane resistance and durability of 5 types of commercial anion exchange membranes in 7 M KOH solution and at 80℃. The membrane resistance of AEM membrane measured in 7 M KOH solution and at 80℃ had a lower value of about 8-24 times compared to the other membranes. The durability of AEM membrane tested with the soaking time in 7 M KOH solution and at 80℃ showed a very good stability and that of FAAM40 and FAAM75-PK showed secondly a good stability. The thermal stability with the soaking time in 7 M KOH solution and at 80℃ of FAAM40 and FAAM75-PK membrane analyzed by thermo-gravimetric analysis showed a good stability compared to the other membranes.

Study on Solution-Processed Flexible Electrochromic Devices with Improved Coloration Efficiency and Stability

  • Gihwan Song;Haekyoung Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • According to the recent global warming, it is necessary to use energy efficiently together with eco-friendly energy. The development of alternative technologies is requisite for managing the current energy and climate crises. In this regard, "smart windows," which can control solar radiation, can be used to mitigate energy demands. Electrochromic devices (ECDs) effectively control the amount of solar energy reaching commercial and other living areas and maintain climate conditions via color modulation in response to small external stimuli, such as temperature and light irradiation. However, the performance and the stability of ECDs depend on the state of the electrolyte and sealing of the device. To resolve the aforementioned issues, an ECD was manufactured by using a poly (methyl methacrylate) (PMMA)-based gel polymer electrolyte (GPE), and a laminating method was used to adequately seal the ECD. The concentrations of PMMA, acetonitrile (ACN), and ferrocene (Fc) were controlled to optimize the composition of the GPE to achieve an enhanced electrochromic performance. The fabricated GPE-based ECD afforded high optical contrast (~81.92%), with high electrochromic stability up to 10,000 cycles. Moreover, the lamination method employing the GPE could be used to fabricate large-area ECDs.

Energy dissipation response of brick masonry under cyclic compressive loading

  • Senthivel, R.;Sinha, S.N.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.4
    • /
    • pp.405-422
    • /
    • 2003
  • Scaled brick masonry panels were tested under cyclic unialxial compression loading to evaluate its deformation characteristics. An envelope stress - strain curves, a common point curves and stability point curves were obtained for various cyclic test conditions. Loops of the stress-strain hysteresis were used to determine the energy dissipation for each cycle. Empirical expressions were proposed for the relations between energy dissipation and envelope and residual strains. These relations indicated that the decay of masonry strength starts at about two-third of peak stress.

Derivation of the Energy Function Reflecting Exciter Control Effects (여자기 제어 효과를 고려한 에너지함수 유도 및 적용가능성에 관한 기초 연구)

  • Kim, Gu-Han;Choi, Byoung-Kon;Park, Jeong-Do;Moon, Young-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.125-128
    • /
    • 2000
  • This paper presents an energy function which provides the direct relationships between the system stability and parameters of the exciter system. The energy function is derived from the energy conservation law by using the first motion integral. he time derivative does not absolutely satisfy the seminegativeness. However dE/dt usually has big negative value just after the fault clearing so that the energy is rapidly decreased. In this situation, the system state can be obviously confined in a stable region if the intial energy is less than the UEP energy. With these observation, two theorems are developed regarding the state confinement and asymptotic stability. Based on two theorems a new approximated direct energy method is developed to analyze the transient stability with the consideration of the exciter control effects. The proposed method has been tested for a single-machine-infinite bus system.

  • PDF

AN ENERGY-STABLE AND SECOND-ORDER ACCURATE METHOD FOR SOLVING THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

  • KIM, JEONGHO;JUNG, JINWOOK;PARK, YESOM;MIN, CHOHONG;LEE, BYUNGJOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.2
    • /
    • pp.93-114
    • /
    • 2019
  • In this article, we introduce a finite difference method for solving the Navier-Stokes equations in rectangular domains. The method is proved to be energy stable and shown to be second-order accurate in several benchmark problems. Due to the guaranteed stability and the second order accuracy, the method can be a reliable tool in real-time simulations and physics-based animations with very dynamic fluid motion. We first discuss a simple convection equation, on which many standard explicit methods fail to be energy stable. Our method is an implicit Runge-Kutta method that preserves the energy for inviscid fluid and does not increase the energy for viscous fluid. Integration-by-parts in space is essential to achieve the energy stability, and we could achieve the integration-by-parts in discrete level by using the Marker-And-Cell configuration and central finite differences. The method, which is implicit and second-order accurate, extends our previous method [1] that was explicit and first-order accurate. It satisfies the energy stability and assumes rectangular domains. We acknowledge that the assumption on domains is restrictive, but the method is one of the few methods that are fully stable and second-order accurate.

A study on the ATC(Available Transfer Capabilily) calculation using an Energy Function Method (에너지함수법을 이용한 가용송전용량(ATC) 계산에 관한 연구)

  • Kim, Jae-Hyeon;Jeong, Sung-Won;Kim, Yong-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.2
    • /
    • pp.94-100
    • /
    • 2008
  • Available transfer capability(ATC) quantifies the viable increase in real power transfer from one point to another in a power system. ATC calculation has predominantly focussed on steady-state viability. But ATC assessment with transient stability constraints has a dominant part in overall ATC calculation. ATC assessment requires a reputation of (n-1) security assessment with constraints of thermal limits, voltage stability and dynamic stability. An estimation of determinant contingency screening method is used for computing eigenvalue of Jacobian matrix. This paper proposed a methods to ATC calculation using energy function. Constraints is used thermal limits, voltage stability and transient stability.