• 제목/요약/키워드: Energy separation

검색결과 1,474건 처리시간 0.027초

방사선가교로 제조된 폴리아크릴산 코팅 스테인리스그물망에 의한 유수 분리 (Separation of Water and Oil by Poly(acrylic acid)-coated Stainless Steel Mesh Prepared by Radiation Crosslinking)

  • 노영창;신정웅;박종석;임윤묵;전준표;강필현
    • 방사선산업학회지
    • /
    • 제9권2호
    • /
    • pp.77-84
    • /
    • 2015
  • The stainless steel mesh coated with poly(acrylic acid) hydrogel was fabricated and applied for the separation of water and oil. The stainless steel mesh was immersed in aqueous poly (acrylic acid) solution, and then irradiated by radiation to introduce poly(acrylic acid) hydrogel on the surface of mesh by crosslinking. It was possible to separate oil and water from mixtures of oil/water effectively using the hydrogel-coated mesh. The effect of irradiation dose, coating thickness, size of mesh on the separation efficiency was examined.

고-액 분리법을 이용한 LCC 도가니에서의 카드뮴 회수에 관한 연구 (A Study of Cadmium Recovery from LCC Crucible Using Solid-liquid Separation Method)

  • 박대엽;김택진;김지용;김경량;김시형;심준보;백승우;안도희
    • 공학기술논문지
    • /
    • 제4권4호
    • /
    • pp.431-436
    • /
    • 2011
  • This study was carried out to reduce the problem during distillation process, which separate U, TRU (TRans Uranium) metal electro deposit, Cd and LiCl-KCl eutectic salt generating from LCC (Liquid Cadmium Cathode) electro winning process. The cadmium recovering apparatus was manufactured to separate for each metal using solid-liquid separation method. The apparatus consists of the first sieve for the separation of U and TRU metal electrodeposit, the second sieve for the separation of LiCl-KCl eutectic salt, cadmium collection basket, and a heating furnace. In addition, the size of each sieve is 2 mm to 3 mm. In this experiment, a metal wire was employed to replace TRU metal electrodeposit and U, which exist actually in a LCC crucible. In the solid state, The LiCl-KCl is separated at 340℃ at which the solid and the liquid of the remaining cadmium and LiCl-KCl eutectic salt coexists in each, after the metal wire separated at 500℃. As a result, it seems that it would be beneficial to set the processing condition in the distillation process with the additional treatment process of cadmium and LiCl-KCl eutectic salt.

석유화학공업에서의 투과증발막의 응용 (Application of Pervaporation Membrane Process in Petrochemical Industry)

  • 남상용
    • 멤브레인
    • /
    • 제17권1호
    • /
    • pp.1-13
    • /
    • 2007
  • 분리막을 이용한 투과증발공정은 에너지 소모가 적고 설치비와 운영비면에서 우수한 효과를 볼 수 있기 때문에 증류공정을 대신할 수 있는 공정으로 주목받고 있다. 특히 석유화학공정은 공정 중에 에너지 소모가 크고, 많은 화합물들이 공비혼합물을 이루고, 새로운 공정을 설치하기 위해서는 작은 공간을 필요로 하기 때문에 투과증발공정은 증류공정을 대체할 수 있는 매우 유력한 후보이다. 벤젠/시클로헥산을 포함하는 방향족 화합물의 분리, 올레핀/파라핀 분리, 자일렌 이성질체의 분리, 반응성 단량체의 회수, 가솔린으로부터 황 화합물의 제거 등에 투과증발공정을 응용하는 많은 연구가 이루어졌으며, 상용화가 되고 있다.

운동 양자 체(Kinetic Quantum Sieving) 효과를 가진 나노다공성 물질을 활용한 수소동위원소 분리 동향 (Research Trend of Crystalline Porous Materials for Hydrogen Isotope Separation via Kinetic Quantum Sieving)

  • 이슬지;오현철
    • 한국재료학회지
    • /
    • 제31권8호
    • /
    • pp.465-470
    • /
    • 2021
  • Deuterium is a crucial clean energy source required for nuclear fusion and is a future resource needed in various industries and scientific fields. However, it is not easy to enrich deuterium because the proportion of deuterium in the hydrogen mixture is scarce, at approximately 0.016 %. Furthermore, the physical and chemical properties of the hydrogen mixture and deuterium are very similar. Therefore, the efficient separation of deuterium from hydrogen mixtures is often a significant challenge when using modern separation technologies. Recently, to effectively separate deuterium, studies utilizing the 'Kinetic Quantum Sieving Effect (KQS)' of porous materials are increasing. Therefore, in this review, two different strategies have been discussed for improving KQS efficiency for hydrogen isotope separation performance using nanoporous materials. One is the gating effect, which precisely controls the aperture locally by adjusting the temperature and pressure. The second is the breathing phenomenon, utilizing the volume change of the structure from closed system to open system. It has been reported that efficient hydrogen isotope separation is possible using these two methods, and each of these effects is described in detail in this review. In addition, a specific-isotope responsive system (e.g., 2nd breathing effect in MIL-53) has recently been discovered and is described here as well.

Real-time identification of the separated lanthanides by ion-exchange chromatography for no-carrier-added Ho-166 production

  • Aran Kim;Kanghyuk Choi
    • 대한방사성의약품학회지
    • /
    • 제7권2호
    • /
    • pp.69-77
    • /
    • 2021
  • No-carrier-added holmium-166 (n.c.a 166Ho) separation is performed based on the results of separation conditions using stable isotopes dysprosium (Dy) and holmium (Ho) to minimize radioactive waste from separation optimization procedures. Successful separation of two adjacent lanthanides was achieved by cation-exchange chromatography using a sulfonated resin in the H+ form (BP-800) and α-hydroxyisobutyric acid (α-HIBA) as eluent. For the identification process after separation of stable isotopes, the use of chromogenic reagents alternatively enables on-line detection because the lanthanides are hardly absorb light in the UV-vis region or exhibit radioactivity. Four different chromogenic reagents were pre-tested to evaluate suitable coloring reagents, of which 4-(2-Pyridylazo)resorcinol is the most recommendable considering the sensitivity and specificity for lanthanides. Lanthanide radioisotopes (RI) were monitored for separation with an RI detector using a lab-made separation LC system. Under the proper separation conditions, the n.c.a 166Ho was effectively obtained from a large amount of 100 mg dysprosium target within 2 hrs.

습식 화학 공정에 의한 태양전지로부터 고순도 실리콘 회수 및 이를 이용한 태양전지 재제조 (Photovoltaic Performance of Crystalline Silicon Recovered from Solar Cell Using Various Chemical Concentrations in a Multi-Stage Process)

  • 노민호;이준규;안영수;여정구;이진석;강기환;조철희
    • 한국재료학회지
    • /
    • 제29권11호
    • /
    • pp.697-702
    • /
    • 2019
  • In this study, using a wet chemical process, we evaluate the effectiveness of different solution concentrations in removing layers from a solar cell, which is necessary for recovery of high-purity silicon. A 4-step wet etching process is applied to a 6-inch back surface field(BSF) solar cell. The metal electrode is removed in the first and second steps of the process, and the anti-reflection coating(ARC) is removed in the third step. In the fourth step, high purity silicon is recovered by simultaneously removing the emitter and the BSF layer from the solar cell. It is confirmed by inductively coupled plasma mass spectroscopy(ICP-MS) and secondary ion mass spectroscopy(SIMS) analyses that the effectiveness of layer removal increases with increasing chemical concentrations. The purity of silicon recovered through the process, using the optimal concentration for each process, is analyzed using inductively coupled plasma atomic emission spectroscopy(ICP-AES). In addition, the silicon wafer is recovered through optimum etching conditions for silicon recovery, and the solar cell is remanufactured using this recovered silicon wafer. The efficiency of the remanufactured solar cell is very similar to that of a commercial wafer-based solar cell, and sufficient for use in the PV industry.

태양광 모듈 표면 온도 제어에 따른 백시트 박리 거동 (Peeling Behavior of Backsheet according to Surface Temperature of Photovoltaic Module)

  • 김정훈;이준규;안영수;여정구;이진석;강기환;조철희
    • 한국재료학회지
    • /
    • 제29권11호
    • /
    • pp.703-708
    • /
    • 2019
  • In this study, we investigate the relationship between the peeling behavior of the backsheet of a photovoltaic(PV) module and its surface temperature in order facilitate removal of the backsheet from the PV module. At low temperatures, the backsheet does not peel off whereas, at high temperatures, part of the backsheet remains on the surface of the PV module after the peeling process. The backsheet material remaining on the surface of the PV module is confirmed by X-ray diffraction(XRD) analysis to be poly-ethylene(PE). Differential scanning calorimetry(DSC) is also performed to investigate the interfacial characteristics of the layers of the PV module. In particular, DSC provides the melting temperature($T_m$) of laminated ethylene vinyl acetate(EVA) and of the backsheet on the PV module. It is found that the backsheet does not peel off below the $T_m$ of ethylene of EVA, while the PE layer of the backsheet remains on the surface of the PV module above the $T_m$ of the PE. Thus, the backsheet is best removed at a temperature between the $T_m$ of ethylene and that of PE layer.

Numerical Simulation on the Performance of Axial Vane Type Gas-Liquid Separator with Different Guide Vane Structure

  • Yang, Fan;Liu, Ailan;Guo, Xueyan
    • International Journal of Fluid Machinery and Systems
    • /
    • 제10권1호
    • /
    • pp.86-98
    • /
    • 2017
  • In order to obtain high efficiency and low resistance droplet separation apparatus, axial vane type gas-liquid separators with different guide vanes were designed, and the RNG $k-{\varepsilon}$ model as well as discrete phase model (DPM) were used to investigate the flow pattern inside the separators. It was shown that the tangential velocity distribution under different guide vanes have Rankine vortex characteristics, pressure distribution exhibits a high similarity which value becomes big as the increase of the blade outlet angle and the decrease of the guide vane numbers. The increase of the guide vane numbers and the decrease of the blade outlet angle could make separation improve significantly. The separation efficiency is almost 100% when the droplet diameter is bigger than $40{\mu}m$.

A PRACTICAL METHOD FOR THE DISPOSAL OF RADIOACTIVE ORGANIC WASTE

  • Kim, Kil-Jeong;Shon, Jong-Sik;Ryu, Woo-Seog
    • Nuclear Engineering and Technology
    • /
    • 제39권6호
    • /
    • pp.731-736
    • /
    • 2007
  • Radioactive organic wastes containing acetone, alcohol, and particularly tributyl phosphate (TBP)/dodecane contaminated with uranium are extracted from the PUREX process and the decontamination of related equipment. An evaporation method that utilizes existing DU oxidation apparatuses and ventilation systems and a typical muffle furnace installed with an aspirating system are adopted. A separation method using phosphoric acid especially for the TBP/dodecane waste is also studied and evaluated. The results show that a simple evaporation process is utilizable for wastes containing acetone or alcohol with a lower boiling point. A modified muffle furnace is more appropriate to dispose directly of organic wastes having a higher boiling point, such as TBP/dodecane, without generating a condensed waste solution. It is recommended that, when the uranium concentration of TBP/dodecane waste is much higher than stipulated levels, separation technology should be applied to remove uranium from the mixture. Each type of solvent after separation can then be considered disposable below the regulatory limit in the modified furnace discussed in this study.

플렉서블한 금속-유기 골격체(MOFs)를 활용한 메탄/질소 분리 (CH4/N2 Separation on Flexible Metal-Organic Frameworks(MOFs))

  • 정민지;박재우;오현철
    • 한국재료학회지
    • /
    • 제28권9호
    • /
    • pp.506-510
    • /
    • 2018
  • Nitrogen is a serious contaminant in natural gas because it decreases the energy density. The natural gas specification in South Korea requires a $N_2$ content of less than 1 mol%. Thus, cost-effective $N_2$ removal technology from natural gas is necessary, but until now the only option has been energy-intensive processes, e.g., cryogenic distillation. Using porous materials for the removal process would be beneficial for an efficient separation of $CH_4/N_2$ mixtures, but this still remains one of the challenges in modern separation technology due to the very similar size of the components. Among various porous materials, metal-organic frameworks (MOFs) present a promising candidate for the potential $CH_4/N_2$ separation material due to their unique structural flexibility. A MIL-53(Al), the most well-known flexible metal-organic framework, creates dynamic changes with closed pore (cp) transitions to open pores (ops), also called the 'breathing' phenomenon. We demonstrate the separation performance of $CH_4/N_2$ mixtures of MIL-53(Al) and its derivative $MIL-53-NH_2$. The $CH_4/N_2$ selectivity of $MIL-53-NH_2$ is higher than pristine MIL-53(Al), suggesting a stronger $CH_4$ interaction with $NH_2$.