DOI QR코드

DOI QR Code

Real-time identification of the separated lanthanides by ion-exchange chromatography for no-carrier-added Ho-166 production

  • Aran Kim (Radioisotope Research Division, Korea Atomic Energy Research Institute) ;
  • Kanghyuk Choi (Radioisotope Research Division, Korea Atomic Energy Research Institute)
  • Received : 2021.12.02
  • Accepted : 2021.12.28
  • Published : 2021.12.30

Abstract

No-carrier-added holmium-166 (n.c.a 166Ho) separation is performed based on the results of separation conditions using stable isotopes dysprosium (Dy) and holmium (Ho) to minimize radioactive waste from separation optimization procedures. Successful separation of two adjacent lanthanides was achieved by cation-exchange chromatography using a sulfonated resin in the H+ form (BP-800) and α-hydroxyisobutyric acid (α-HIBA) as eluent. For the identification process after separation of stable isotopes, the use of chromogenic reagents alternatively enables on-line detection because the lanthanides are hardly absorb light in the UV-vis region or exhibit radioactivity. Four different chromogenic reagents were pre-tested to evaluate suitable coloring reagents, of which 4-(2-Pyridylazo)resorcinol is the most recommendable considering the sensitivity and specificity for lanthanides. Lanthanide radioisotopes (RI) were monitored for separation with an RI detector using a lab-made separation LC system. Under the proper separation conditions, the n.c.a 166Ho was effectively obtained from a large amount of 100 mg dysprosium target within 2 hrs.

Keywords

Acknowledgement

This study was supported by Nuclear R&D Program, Development of Production Standardized Production Technology for Theranostic RI (57831-21) and KAERI Major Project, Development of Radioisotope Production and Application Technology (524430-20).

References

  1. Ashour RM, Samouhos M, Legaria EP, Svard M, Hogblom J, Forsberg K, Palmlof M, Kessler VG, Seisenbaeva GA, Rasmuson AC. DTPA-functionalized silica nano- and microparticles for adsorption and chromatographic separation of rare earth elements. ACS Sustainable Chem Eng 2018;6:6889-6900. https://doi.org/10.1021/acssuschemeng.8b00725
  2. Binnemans K, Jones PT, Blanpain B, Gerven TN, Yang X Walton A, Buchert M. Recycling of rare earths: a critical review. J Clean Prod 2013;51:1-22. https://doi.org/10.1016/j.jclepro.2012.12.037
  3. Ryu SJ, Kim A, Kim MD, Hong SW, Min SS, Lee JH, Lee JK, Jung H. Photoluminescent europium(III) complex intercalated in natural and synthetic clay minerals for enhanced latent fingerprint detection. Appl Clay Sci 2014;101:52-59. https://doi.org/10.1016/j.clay.2014.07.010
  4. Eliseeva SV, Bunzli JC. Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 2010;39:189-227. https://doi.org/10.1039/B905604C
  5. Van de Vborde M, Van Hecke K, Cardinaels T, Binnemans K. Radiochemical processing of nuclear-reactor-produced radiolanthanides for medical applications. Coord Chem Rev 2019;382:103-125. https://doi.org/10.1016/j.ccr.2018.11.007
  6. Dadachova E, Mirzadeh S, Lambrecht RM, Hetherington EL, Knapp FF. Separation of Carrier-Free Holmium-166 from Neutron-Irradiated Dysprosium Targets. Anal Chem 1994;66:4272-4277. https://doi.org/10.1021/ac00095a024
  7. Kim EH, Rhee CH, Lim SM, Park KB. Beta dosimetry for applying 166Ho-chitosan complex to cystic brain tumor treatment: Monte Carlo simulations using a spherial model. Korean J Nucl Med 1997;31:433-439.
  8. Lahiri S, Volkers KJ, Wierczinski B. Production of 166Ho through 164Dy(n,γ)165Dy(n,γ)166Dy(β-)166Ho and separation of 166Ho. Appl Radiat Isot 2004;61:1157-1161. https://doi.org/10.1016/j.apradiso.2004.03.117
  9. Nayak D, Lahiri S. Separation of the carrier free radioisotopes of lanthanide series elements. Solvent Extr Ion Exc 1999; 17:1133-1154. https://doi.org/10.1080/07366299908934640
  10. Cassidy RM. Determination of rare-earth elements in rocks by liquid chromatography. Chem Geol 1988;67:185-195. https://doi.org/10.1016/0009-2541(88)90127-1
  11. Buchmeiser MR, Seeber G, Tessadri R. Quantification of lanthanides in rocks using succinic acid-derivatized sorbents for on-line SPE-RP-ion-pair HPLC. Anal Chem 2000;72:2595-2602. https://doi.org/10.1021/ac991217i
  12. Mocko V Taylor WA, Nortier FM, Engle JW, Barnhart TE, Nickles RJ, Pollington AD, Kunde GJ, Rabin MW, Birnbaum ER. Isolation of 163Ho from dysprosium target material by HPLC for neutrino mass measurements. Radiochim Acta 2015;103:577-585. https://doi.org/10.1515/ract-2014-2362
  13. Frei RW, Jansen H, Brinkman UAT. Postcolumn Reaction Detectors for HPLC. Anal Chem 1985;57:1529-1539.
  14. Santoyo E, Verma SR Determination of lanthanides in synthetic standards by reversed-phase high-performance liquid chromatography with the aid of a weighted least-squares regression model. J Chromatogr A 2003;997:171-182. https://doi.org/10.1016/S0021-9673(03)00624-1
  15. Zhang S, Jiang Z, Liu X, Zhou L, Peng W. Possible gadolinium ions leaching and MR sensitivity over-estimation in mesoporous silica-coated upconversion nanocrystals. Nanoscale 2013;5:8146-8155. https://doi.org/10.1039/c3nr01902k
  16. Oztekin N, Erim FB. Separation and direct UV detection of lanthanides complexed with cupferron by capillary electrophoresis. J Chromatogr A 2000;895:263-268. https://doi.org/10.1016/S0021-9673(00)00589-6
  17. Kim A, Choi K. Preparation for simultaneous determination of stable isotope Dy/Ho separation by high-performance liquid chromatography, in: The Korean Nuclear Society Spring Meeting, Jeju, Korea, May 23-24, 2019.
  18. Peng SX, Dansereau SM. Ion-exchange liquid chromatographic analysis of bisphosphonates by on-line post-column photochemical reaction and spectrophotometric detection. J Chromatogr A 2001;914:105-110. https://doi.org/10.1016/S0021-9673(00)01118-3
  19. Sikovec M, Franko M, Novic M, Veber M. Effect of organic solvents in the on-line thermal lens spectrometric detection of chromium(III) and chromium(VI) after ion chromatographic separation. J Chromatogr A 2001;920:119-125. https://doi.org/10.1016/S0021-9673(01)00611-2
  20. Choppin GR, Silva RJ. Separation of the lanthanides by ion exchange with alpha-hydroxy isobutyric acid. Lawrence Berkeley National Laboratory, 1956. https://escholarship.org/uc/item/12n10816