• Title/Summary/Keyword: Energy policy transition

Search Result 69, Processing Time 0.031 seconds

Melting Point of Amorphous Copper Phase on Crystalline Silicon Solar Cells During Cold Spray using Molecular Dynamics Calculations (분자 동역학 계산을 통한 결정질 실리콘 태양전지 기판에 콜드 스프레이 전극 형성 시 발생되는 비정질 구리상에 대한 용융 온도 변화 연구)

  • Kim, Soo Min;Kang, Byungjun;Jeong, Sujeong;Kang, Yoonmook;Lee, Hae-seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.3 no.2
    • /
    • pp.61-64
    • /
    • 2015
  • In solar industry, numerous researchers reported about cold spray method among various electrode formation technic, but there are no known a bonding mechanism of metal powder. In this study, a cross-section of copper electrode formed by cold spray method was observed and heterogeneous phase between silicon substrate and copper electrode was analyzed using morphology observation technic. SEM and TEM analysis were performed to analyze a crystallinity and distribution shape of heterogeneous copper phase. Molecular dynamics simulation was performed to calculate glass transition temperature of copper metal. In the result, amorphous copper phase was observed near interface between silicon substrate and metal electrode. The results of the molecular dynamics simulation show that an amorphous copper phase could be formed at a temperature below the melting point of copper because cold spraying resulted in a lower glass transition temperature.

Cluster-Based Node Management Algorithm for Energy Consumption Monitoring in Wireless Mobile Ad Hoc Networks (무선 모바일 애드혹 네트워크상에서 에너지 소모 감시를 위한 클러스터 기반의 노드 관리 알고리즘)

  • Lee, Chong-Deuk
    • Journal of Digital Convergence
    • /
    • v.14 no.9
    • /
    • pp.309-315
    • /
    • 2016
  • The node mobility in the wireless mobile network environment increases the energy consumption. This paper proposes a CNMA (cluster-based node management algorithm) to reduce the energy consumption caused by node mobility, and to prolong the life cycle for cluster member nodes. The proposed CNMA traces the mobility for nodes between cluster header and member, and it analyses the energy capacity as monitoring periodically their relationship. So, it makes a division and merges by analysing the state transition for nodes. This paper is to reduce the energy consumption due to the node mobility. The simulation results show that the proposed CNMA can efficiently control the energy consumption caused by mobility, and it can improve the energy cycle.

Linking nuclear energy, human development and carbon emission in BRICS region: Do external debt and financial globalization protect the environment?

  • Sadiq, Muhammad;Shinwari, Riazullah;Usman, Muhammad;Ozturk, Ilhan;Maghyereh, Aktham Issa
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3299-3309
    • /
    • 2022
  • Nuclear energy has the potential to play an influential role in energy transition efforts than is now anticipated by many countries. Realizing sustainable human development and reducing global climate crises will become more difficult without significantly increasing nuclear power. This paper aims to probe the role of nuclear energy, external debt, and financial globalization in sustaining human development and environmental conditions simultaneously in BRICS (Brazil, Russia, India, China, and South Africa) countries. This study applied a battery of second-generation estimation approaches over the period from 1990 to 2019. These methods are useful and robust to cross-countries dependencies, slope heterogeneity, parameters endogeneity, and serial correlation that are ignored in conventional approaches to generate more comprehensive and reliable estimates. The empirical findings indicate that nuclear energy and financial globalization contribute to human development, whereas external debt inhibits it. Similarly, financial globalization accelerates ecological deterioration, but nuclear energy and external debt promote environmental sustainability. Moreover, the study reveals bidirectional feedback causalities between human development, carbon emissions and nuclear energy consumption. The study offers useful policy guidance on accomplishing sustainable and inclusive development in BRICS countries.

Estimating the Value of the North Korean Renewable Energy Power Market Taking into Account North Korea's Power Generation and the Safety of Its Inhabitants (북한 발전과 주민 안전을 고려한 북한 신재생에너지 전력 시장 가치 추정)

  • Jang, Hyung Sik;Koo, Il Seob
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.3
    • /
    • pp.75-84
    • /
    • 2022
  • While protecting its lives and property from natural disasters such as floods and droughts, North Korea needs to develop into an informationized industrial society by securing renewable energy power in the era of energy transition. In addition, existing research has considered that a policy of continuous and consistent expansion of renewable energy based on the safety of the lives of ordinary people could be the solution. South Korea needs to recognize that the supply of energy for a minimum of living is more important to the North Korean people than the economic benefits of securing North Korea's renewable energy market. Therefore, in this paper, from that point of view, we have calculated the amount of electricity that North Korea lacks necessary for the lives of its inhabitants that can be replaced by renewable energy, and considered ways to estimate the market value.

A Study on the Application of AI-Based Composite Sensor in WTP (수도사업장에서의 AI 기반 복합센서 적용 방안 연구)

  • Hong, Sung-taek;An, Sang-byung;Kim, Kuk-il;Cho, Hyun-sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.41-42
    • /
    • 2021
  • The Green New Deal policy was established to innovate the government's energy consumption structure, establish a third basic energy plan to strengthen the global competitiveness of the energy industry, and realize a carbon neutral society due to the increased need for transition to a low-carbon economy. Waterworks such as drinking water, water purification plant, and pressurization plant analyze control factors and energy consumption status by process to improve energy management efficiency and reduce energy usage through the 4th industrial revolution. Ultimately, we want to realize net-zero water purification plant.

  • PDF

Challenges of decarbonizing electricity in Indonesia: Barriers in the adoption of solar PV

  • Pradityo Sukarso, Adimas
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.4 no.3
    • /
    • pp.27-35
    • /
    • 2018
  • Around the world, there are increasing efforts underway to decarbonize the electricity generation system to mitigate the environmental impacts including climate change. While Indonesia has a huge potential for new and renewable energy, particularly solar photovoltaic, Indonesia has been largely dependent on fossil fuels. As of 2017, the installed capacity for solar photovoltaic in Indonesia was 78.5MW and this was only 0.04% of the theoretical solar potential, which is around 207.9GW($4.8kWh/m^2/day$). With the case of solar photovoltaic, this paper examined the reasons of low adoption of the technology and the challenges of energy transition in Indonesia from the policy and institutional perspectives.

  • PDF

Review of Electric Vehicle to Grid System (전기자동차 전력연계시스템의 리뷰)

  • LIM, JAEWAN;LIM, OCK TAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.6
    • /
    • pp.499-508
    • /
    • 2020
  • Whilst vehicle-to-every (V2X) is still at a research and development phase, we are nearing the point when this technology could begin to enter in commercial mass markets. However, this transition is unlikely to happen until a number of issues have been resolved which currently hinder the developing of V2X technology and its capacity to provide value to end-users and other actors. This roadmap has set out plan for how these issues may be overcome, based on eight key goals that the automotive industry, network operators and policy makers should aim to achieve. Suggestions for near-term activities that may be carried out towards meeting these goals have also been identified.

Assessing the Impacts of EU's Carbon Border Adjustment Mechanisms and Its Policy Implications: An Environmentally Extended Input-Output Analysis (환경산업연관분석을 활용한 탄소국경조정 메커니즘 도입에 따른 국내 산업계 영향 분석과 대응전략)

  • Yeo, Yeongjun;Cho, Hae-in;Jeong, Hoon
    • Environmental and Resource Economics Review
    • /
    • v.31 no.3
    • /
    • pp.419-449
    • /
    • 2022
  • This paper aims to quantify the potential economic burdens of EU's carbon border adjustment mechanisms faced by Korean domestic industries. In addition, this study tries to compare and analyzes changes in the burden of each industry resulted from the implementation of the domestic low-carbon policy. Based on the quantitative findings, we intend to suggest policy implications for establishing mid- to long-term strategies in response to climate change risks. Based on the environmentally extended input-output analysis, the total economic burdens of the domestic industries due to the EU's carbon border adjustment mechanisms are estimated to be approximately KRW 8,245.6 billion in 2030. Looking at the impacts by industry, it is found that major industries such as petrochemicals, petroleum refining, transportation equipment, steel, automobiles, and electric/electronic equipment industries are expected to account for 84.3% of the total potential burdens. In addition, in multiple policy scenarios assuming technological developments and energy transition following the implementation of domestic low-carbon policies, the total economic burden of carbon border adjustment is expected to decrease by about 11.7% to 15.0%. The main result of this study suggests that we should not view EU EU's carbon border adjustment mechanism as a trade regulation, but to use it as a momentum for more effective implementation of the low-carbon and energy transition strategies in the global carbon neural era.

Study on Reduction of Curtailment of Renewable Generation based on Green Hydrogen Sector Coupling (그린수소 기반 섹터 커플링 통한 재생에너지 출력제한 경감효과 연구)

  • Jeon, Wooyoung;Kim, Jin-yi;Lee, Seongwoo
    • New & Renewable Energy
    • /
    • v.18 no.2
    • /
    • pp.50-59
    • /
    • 2022
  • The Korean government announced the "1st Basic Plan for the Transition to Hydrogen Economy" in 2021 and declared the establishment of a hydrogen industry ecosystem by 2040. To build a low-carbon power system, resources that can efficiently accommodate renewable energy are required, and green hydrogen is considered a potential solution. This study analyzed the economic feasibility of green hydrogen-based sector coupling to reduce curtailment of renewable generation in the Jeju power system by 2025 under the scenario of with or without HVDC#3. The result showed that HVDC#3 significantly reduced the frequency of curtailment from 16.1% to 3.0%. In addition, green hydrogen-based sector coupling was an economically feasible option as result showed an IRR of 4.86% when HVDC#3 was connected and 11.45% when it was not under the condition of achieving 50% curtailment reduction. This study shows that the higher the level of renewable energy deployment, the more delayed the HVDC connection between Jeju and the main land, and the lower the SMP, the more economically feasible the green hydrogen-based sector coupling is. Furthermore, this study suggests that the policy goal of completely reducing curtailment is not economically efficient.

A Study on Methodology for Verifying Energy Saving and Activity in School (학교 건물에서의 에너지절감 성과 활동 검증을 위한 방법론 연구)

  • Lee, Hangju;Kim, Insoo
    • Journal of Energy Engineering
    • /
    • v.29 no.1
    • /
    • pp.25-33
    • /
    • 2020
  • Recently, as the mandatory policy of zero energy building is promoted, policies / systems for transition to Zero Energy School are being promoted, but there is no method to systematically analyze and verify the results of energy saving activities for school buildings. For the study of energy performance verification methodology, the current status of related standards was referred to, and the case study of other methodologies was conducted to examine the tools that can analyze the performance in the field. In addition, this study analyzed the current status and characteristics of energy management through domestic school visits. In this paper, we presented various energy saving projects such as air conditioning and heating facilities, lighting, insulation, change operation behavior, and improve operation methods in new and existing school buildings, and M & V methods for verifying energy savings before and after implementation of energy conservation projects.