• Title/Summary/Keyword: Energy policies

Search Result 624, Processing Time 0.027 seconds

The Benefit-Cost analysis for Korea Lithium-ion Battery Waste Recycling project and promotion plans (국내 중대형 이차전지 재활용 사업의 경제성 분석 및 발전방안 연구)

  • Mo, Jung-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.326-332
    • /
    • 2018
  • Korea faces major changes in energy policy, which include eco-friendly and zero-nuclear power. On the other hand, there are very few policies for the waste-management of mid- to large-sized lithium-ion batteries, such as electric car batteries and energy storage systems, which are expected to increase explosively due to such energy policy changes. Therefore, this study estimated the amount of mid- to large-sized lithium ion batteries waste and performed economics analysis of a middle and large sized secondary battery recycling project. Based on the results, a policy alternative for the revitalization of the related lithium-ion battery recycling industry is suggested. As a result, the B / C ratio of a domestic mid - to large - sized lithium ion battery recycling project is 1.06, in which the benefit is higher than the cost, so the business is economic feasible. Although the recycling project's economic efficiency is high, the recycling industry has not been activated in Korea because the domestic demand for rechargeable batteries recycling is very low. To solve this problem, this study proposes a plan to activate the industry by adding lithium secondary batteries to the EPR (Extended Producer Responsibility) items.

A Study of Estimation of Greenhouse Gas Emission and Reduction by Municipal Solid Waste (MSW) Management (D시 생활폐기물 관리 방법과 온실가스 배출량과 감축량 산정 연구)

  • Yun, Hyunmyeong;Chang, Yun;Jang, Yong-Chul
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.606-615
    • /
    • 2018
  • Over the past two decades, the options for solid waste management have been changing from land disposal to recycling, waste-to-energy, and incineration due to growing attention for resource and energy recovery. In addition, the reduction of greenhouse gas (GHG) emission has become an issue of concern in the waste sector because such gases often released into the atmosphere during the waste management processes (e.g., biodegradation in landfills and combustion by incineration) can contribute to climate change. In this study, the emission and reduction rates of GHGs by the municipal solid waste (MSW) management options in D city have been studied for the years 1996-2016. The emissions and reduction rates were calculated according to the Intergovernmental Panel on Climate Change guidelines and the EU Prognos method, respectively. A dramatic decrease in the waste landfilled was observed between 1996 and 2004, after which its amount has been relatively constant. Waste recycling and incineration have been increased over the decades, leading to a peak in the GHG emissions from landfills of approximately $63,323tCO_2\;eq/yr$ in 2005, while the lowest value of $35,962tCO_2\;eq/yr$ was observed in 2016. In 2016, the estimated emission rate of GHGs from incineration was $59,199tCO_2\;eq/yr$. The reduction rate by material recycling was the highest ($-164,487tCO_2\;eq/yr$) in 2016, followed by the rates by heat recovery with incineration ($-59,242tCO_2\;eq/yr$) and landfill gas recovery ($-23,922tCO_2\;eq/yr$). Moreover, the cumulative GHG reduction rate between 1996 and 2016 was $-3.46MtCO_2\;eq$, implying a very positive impact on future $CO_2$ reduction achieved by waste recycling as well as heat recovery of incineration and landfill gas recovery. This study clearly demonstrates that improved MSW management systems are positive for GHGs reduction and energy savings. These results could help the waste management decision-makers supporting the MSW recycling and energy recovery policies as well as the climate change mitigation efforts at local government level.

A study on the improvement of hydrophilic properties of activated carbon surface by nitric acid treatment (질산 처리에 따른 활성탄 표면의 친수성 특성 향상에 관한 연구)

  • Kang, Hye Ju;Yang, So Yeong;Kim, Tae Min;Kim, Yong Ryeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.1241-1248
    • /
    • 2021
  • In order to figure out various environmental problems, various governments and companies are investigating more environmentally policies and technologies. In other words, activated carbon is widely used for the adsorption of different harmful gases and waste liquid treatment. However since the required surface properties are different in various industry, depending on the adsorption properties, the development of activated carbon demand in different ways. In this work, we have investigated and developed the activated carbon surface to improve the hydrophilic properties by nitric acid treatment through reforming of activated carbon.

A Study on The Factors of Policy Change in Latecomer Nations : Through the case of Korea's renewable energy policy change (후발국의 제도 변화 요인 연구 : 한국의 신재생에너지 정책 변동 사례를 통해)

  • Yoon, Youngchul;Choung, Jae-Yong
    • Journal of Technology Innovation
    • /
    • v.27 no.2
    • /
    • pp.1-36
    • /
    • 2019
  • In line with the international community's movement to reduce greenhouse gas emission, Korea implemented FIT(Feed in Tariff) in 2002 as part of its renewable energy development project. Although the policy had shifted to full-scale RPS(Renewable Portfolio Standards) in 2012, policymakers are still seeking changes due to policy ineffectiveness. While previous studies explain sudden policy changes through external factors, recent research sheds light on internal factors in the process of policy transition. The purpose of this study is to investigate the factors that are responsible for rapidly changing policies in latecomer nations. In order to find this, we look at the case of transition from the FIT to the RPS in Korea's expansion of renewable energy policy. As a result of the research, it is confirmed that the Top-Down decision making system of Korea and the external regulatory change cause rapid policy transition. By looking at these variables, we propose useful implications for policymakers to minimize the policy failure in future policy design and evolution.

Modeling for Nuclear Energy for IoT Systems as Green Fuels in Mitigating COVID-19 (COVID-19 완화를 위한 녹색 연료로서 IoT 시스템용 원자력 에너지 모델링)

  • Jang, Kyung Bae;Baek, Chang Hyun;Woo, Tae Ho
    • Journal of Internet of Things and Convergence
    • /
    • v.7 no.2
    • /
    • pp.13-19
    • /
    • 2021
  • It is analyzed that the energy pattern is affected by the social matters of the disease trend where the energy consumption has been reduced following the depression of the national economy. The campaign of social distance for the people has been done by voluntary or legally due to the epidemic of the Coronavirus Disease 2019 (COVID-19). Some economic stimulus policies have been done in some countries including the United States, South Korea, and some others. It is shown the susceptible, infectious, and recovered (SIR) modeling applied by system dynamics (SD) where the logical modeling is constructed with S, I, and R. Especially, the I is connected with Society including Population, Race, and Maturity. In addition, Economy and Politics are connected to Income, GDP, Resources, President, Popularity, Ruling Government, and Leadership. The graph shows the big jump on 2020 April when is the starting month of the S value multiplication. This shows the effect of the COVID-19 and its related post-pandemic trend. The trends of OECD and non-OECD are very similar and the effect of the virus hazards causes significantly to the economic depressions.

The Value of a Statistical Life and Social Costs of Death due to Nuclear Power Plant Accidents and Energy Policy Implications (원자력발전소 사고 사망의 통계적 생명가치와 사회적 비용 및 에너지정책 시사점)

  • Yong-Joo, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.79-90
    • /
    • 2023
  • The study is to estimate the social costs of premature deaths due to nuclear power plant(NPP) accidents, by resorting to the contingent valuation method(CVM) which is used to estimate the value of a statistical life(VSL). The VSL estimate is about 3.55 billion won, which is multiplied by some 1.8 million premature deaths due to the accidents in world history of NPP, to get a maximum social cost of 1,952 trillion won. This estimate is equivalent to the 2022 real GDP of Korea. The annual average number of premature deaths and the resulting average social cost is 26,000 and 28 trillion won, respectively. The social cost of premature deaths due not only to accidents, but also the air pollutants from fired power plants(FPP) during 1987~2021 is estimated to be 26,919 trillion won. This is equivalent to 2021 US GDP, and is about 3,000 times higher than that for NPP of 9 trillion won. In 2021, the estimated social costs of FPP and NPP are 1,075 trillion won and 292 billion won, respectively. For South Korea, the study suggests to adapt an energy mix of increased share of electricity production for NPP relative to FPP, given that the 2050 carbon neutrality strategy of Korea is expected to lead to an increased share of renewable energy in electricity production. The study emphasizes accumulating the number of CVM-based VSL studies to ensure efficient energy policies.

Risk of Carbon Leakage and Border Carbon Adjustments under the Korean Emissions Trading Scheme

  • Oh, Kyungsoo
    • Journal of Korea Trade
    • /
    • v.26 no.2
    • /
    • pp.45-64
    • /
    • 2022
  • Purpose - This paper examines South Korea's potential status as a carbon leakage country, and the level of risk posed by the Korean emissions trading scheme (ETS) for Korean industries. The economic effects of border carbon adjustments (BCAs) to protect energy-intensive Korean industries in the process of achieving the carbon reduction target by 2030 through the Korean ETS are also analyzed. Design/methodology - First, using the Korean Input-Output (IO) table, this paper calculates the balance of emissions embodied in trade (BEET) and the pollution terms of trade (PTT) to determine Korean industries' carbon leakage status. Analyses of the risk level posed by carbon reduction policy implementation in international trade are conducted for some sectors by applying the EU criteria. Second, using a computable general equilibrium (CGE) model, three BCA scenarios, exemption regulations (EXE), reimbursement (REB), and tariff reduction (TAR) to protect the energy-intensive industries under the Korean ETS are addressed. Compared to the baseline scenario of achieving carbon reduction targets by 2030, the effects of BCAs on welfare, carbon leakage, outputs, and trading are analyzed. Findings - As Korea's industrial structure has been transitioning from a carbon importing to a carbon leaking country. The results indicate that some industrial sectors could face the risk of losing international competitiveness due to the Korean ETS. South Korea's industries are basically exposed to risk of carbon leakage because most industries have a trade intensity higher than 30%. This could be interpreted as disproving vulnerability to carbon leakage. Although the petroleum and coal sector is not in carbon leakage, according to BEET and PTT, the Korean ETS exposes this sector to a high risk of carbon leakage. Non-metallic minerals and iron and steel sectors are also exposed to a high risk of carbon leakage due to the increased burden of carbon reduction costs embodied in the Korean ETS, despite relatively low levels of trade intensity. BCAs are demonstrated to have an influential role in protecting energy-intensive industries while achieving the carbon reduction target by 2030. The EXE scenario has the greatest impact on mitigation of welfare losses and carbon leakage, and the TAF scenario causes a disturbance in the international trade market because of the pricing adjustment system. In reality, the EXE scenario, which implies completely exempting energy-intensive industries, could be difficult to implement due to various practical constraints, such as equity and reduction targets and other industries; therefore, the REB scenario presents the most realistic approach and appears to have an effect that could compensate for the burden of economic activities and emissions regulations in these industries. Originality/value - This paper confirms the vulnerability of the Korean industrial the risk of carbon leakage, demonstrating that some industrial sectors could be exposed to losing international competitiveness by implementing carbon reduction policies such as the Korean ETS. The contribution of this paper is the identification of proposed approaches to protect Korean industries in the process of achieving the 2030 reduction target by analyzing the effects of BCA scenarios using a CGE model.

Analysis of Environmental Sustainability in South Korean Inland Windfarms (한국 육상풍력발전사업의 환경적 지속가능성 평가 연구 - 58개 환경영향평가서 사례에 대한 정량적 분석 -)

  • Jeong, Eunhae
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.1
    • /
    • pp.47-62
    • /
    • 2022
  • Wind power has been rapidly growing over last decade in the world as well as in South Korea as a feasible renewable energy source. Providing sustainable energy to all while securing environmental sustainability requires evidence based policy making and innovative solutions. Through analysis of 58 cases of South Korean Environmental Impact Assessment (EIA) Report, this paper seeks to identify answers to the following two questions. What are the key characteristics for inland windfarm? Is there a way of measuring environmental sustainability to compare each location to reduce negative environmental impact? Variables related to environmental sustainability of each windfarm case were collected from EIA report and the factor analysis of environmental variables was conducted to calculate the weight for each variable to build environmental sustainability index (ESI) to provide as evidence-based tools for decision making on the location of inland windfarm. 58 cases were categorized as three types 1) Mountain type 2) Ranch Type and 3) Coastal Type depending on their height and degree of naturalness. For analytical research, first, it was successfully calculated environmental sustainability of each windfarm case ranging from 1.04 (#33, Ranch type) to -1.44 (#55, Mountain type). Second, the analysis results showed that ranch type is most environmentally sustainable (Average ESI = 0.4551), followed by coastal type (Ave ESI = 0.3712) and lastly mountain type (Average ESI = -0.3457). These findings are consistent with the previous researches on inland windfarms and provides substantive policy implication on the renewable energy policies.

A study on the impact of carbon tax on carbon dioxide emission, energy use and green growth: Focusing on Finland and 4 others (탄소세 도입이 탄소배출량과 에너지 사용 및 경제성장에 미치는 영향에 관한 연구: 핀란드 외 4개국을 중심으로)

  • Chung, Sang-Kuck;Kim, Seong-Ki
    • International Area Studies Review
    • /
    • v.15 no.1
    • /
    • pp.495-522
    • /
    • 2011
  • In this study, a vector error correction model is considered to analyze the correlations among carbon emission, energy use and economic growth using countries adopted carbon tax such as Finland, Netherland, Newzealand, Sweden, and United Kingdom in the short-run dynamics. In order to examine the effect of a carbon tax on the carbon emission specifically for Finland, New zealand and Sweden in the cointegration coefficients among variables, the economic growth equation has the statistically significant negative value(positive values for Netherland and UK). This implies that in the case of the deviation from a long-run equilibrium all variables except carbon emission and energy use are adjusted toward decreasing. After introducing a carbon tax, all variables for Finland, New zealand and Sweden appear to be negative and positive values for the other countries. The evidence that the carbon emission and energy use have been decreased is very weak in the short-run for Finland, New zealand and Sweden but the economic growth is on the decrease after a carbon tax. However, the empirical results show that the increase in carbon emission leads to the decrease in production for Netherland and UK. This implies that for reducing the carbon emission, these countries need to provide more aggressive policies.

A Study on the Thermal Conductivity Measurement for Planting Mats of Landscaping (조경용 식생매트의 열전도율 측정에 관한 연구)

  • Cha, Uk Jin;Yang, Geon Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.6
    • /
    • pp.85-96
    • /
    • 2018
  • Developed nations have implemented various policies to reduce greenhouse gases since the 1997 Kyoto Protocol in order to minimize the effects of global warming. Korea should also reduce energy consumption in the industrial sector, and the transportation and building sectors in order to achieve its greenhouse gas reduction target of 37 percent compared to the Business As Usual levels. The government implements various laws and regulations for reducing energy consumption. To reduce energy consumption in the building sector, in particular, the Energy Conservation Design Standards are enforced according to the 'Enforcement Support for Green Building Construction'. The amount of electricity used to maintain room temperature at $28^{\circ}C$ in these buildings have a 30% reduction (measured on the walls and rooftop) in power usage compared to buildings not required to meet these standards. Although the effect of these energy savings on landscaping is proven, this demonstration is not effective for energy saving since it is not a suitable method for the 'Energy Saving Design Standards of Buildings'. For landscaping to be effective as far as a component of energy reduction, the perfusion rate of the building should be calculated based on the thermal conductivity of the component materials for the energy saving designs with respect to the basis of Article 14 of the Green Building Act. Therefore, the purpose of this study is to ensure that the planting-based mats currently being widely used in the landscape industry can have insulating performance suitable for the 'Energy Saving Design Standards' of Buildings according to the 'Enable Green Building Construction Methods'.