DOI QR코드

DOI QR Code

Modeling for Nuclear Energy for IoT Systems as Green Fuels in Mitigating COVID-19

COVID-19 완화를 위한 녹색 연료로서 IoT 시스템용 원자력 에너지 모델링

  • Jang, Kyung Bae (Dept. of Mechanical and Control Engineering, The Cyber University of Korea) ;
  • Baek, Chang Hyun (Dept. of Mechanical and Control Engineering, The Cyber University of Korea) ;
  • Woo, Tae Ho (Dept. of Mechanical and Control Engineering, The Cyber University of Korea)
  • 장경배 (고려사이버대학교 기계제어공학과) ;
  • 백창현 (고려사이버대학교 기계제어공학과) ;
  • 우태호 (고려사이버대학교 기계제어공학과)
  • Received : 2021.04.12
  • Accepted : 2021.05.29
  • Published : 2021.06.30

Abstract

It is analyzed that the energy pattern is affected by the social matters of the disease trend where the energy consumption has been reduced following the depression of the national economy. The campaign of social distance for the people has been done by voluntary or legally due to the epidemic of the Coronavirus Disease 2019 (COVID-19). Some economic stimulus policies have been done in some countries including the United States, South Korea, and some others. It is shown the susceptible, infectious, and recovered (SIR) modeling applied by system dynamics (SD) where the logical modeling is constructed with S, I, and R. Especially, the I is connected with Society including Population, Race, and Maturity. In addition, Economy and Politics are connected to Income, GDP, Resources, President, Popularity, Ruling Government, and Leadership. The graph shows the big jump on 2020 April when is the starting month of the S value multiplication. This shows the effect of the COVID-19 and its related post-pandemic trend. The trends of OECD and non-OECD are very similar and the effect of the virus hazards causes significantly to the economic depressions.

에너지 패턴은 국가 경제 침체에 따라 에너지 소비가 감소한 질병 트렌드의 사회 문제에 영향을 받는 것으로 분석됩니다. 사람들을 위한 사회적 거리 캠페인은 2019 년 코로나 바이러스 질병 (COVID-19)의 전염병으로 인해 자발적으로 또는 법적으로 수행되었습니다. 미국, 한국 등 일부 국가에서 일부 경제 부양 정책이 시행되었습니다. S, I, R로 논리적 모델링이 구성되는 시스템 역학 (SD)에 의해 적용된 SIR (Sceptible, Infectious, Recovery) 모델링을 보여줍니다. 특히 I 는 인구, 인종, 성숙도를 포함한 사회와 연결되어 있습니다. 또한 경제 및 정치는 소득, GDP, 자원, 대통령, 인기, 통치 정부 및 리더십과 관련이 있습니다. 그래프는 S 값 곱셈이 시작되는 2020년 4월의 큰 도약을 보여줍니다. 이것은 COVID-19의 영향과 관련 유행병 이후 추세를 보여줍니다. OECD와 비 OECD의 경향은 매우 유사하며 바이러스 위험의 영향은 경제 침체를 크게 유발합니다.

Keywords

Acknowledgement

본 논문은 고려사이버대학교 지원을 받아 수행된 것임.

References

  1. BBC, Coronavirus: Covid-19 outbreak 'can be characterised as a pandemic'-WHO. British Broadcasting Corporation (BBC), London, UK, 2020.
  2. CNN, Coronavirus pandemic: Updates from around the world. One CNN Center, Atlanta, USA, 2020.
  3. UNDP, COVID-19 pandemic Humanity needs leadership and solidarity to defeat the coronavirus. Headquarters United Nations Development Programme, One United Nations Plaza, New York, USA.
  4. EIA, Short-term energy outlook, U.S. Energy Information Administration, Washington DC, USA, 2020.
  5. P. Magal and S. Ruan, "Susceptible-infectious-recovered models revisited: From the individual level to the population level," Mathematical Biosciences. Vol.250, pp.26-40, 2014. https://doi.org/10.1016/j.mbs.2014.02.001
  6. A. Minter and R. Retkute, "Approximate Bayesian Computation for infectious disease modelling," Epidemics. Vol.29, p.100368, 2019. https://doi.org/10.1016/j.epidem.2019.100368
  7. T. Leng and M.J. Keeling, "Improving Pairwise Approximations for Network Models with Susceptible-Infected-Susceptible Dynamics," Journal of Theoretical Biology. Vol.500, p.110328.
  8. Y.I. Kim and T.H. Woo, "Safety assessment for the ultimate heat sink (UHS) system with non-injection concept in nuclear power plants (NPPs)," Journal of Nuclear Science and Technology. Vol 54, No.1,2, pp.39-46, 2017. https://doi.org/10.1080/00223131.2016.1204255
  9. T.H. Woo, "Analysis of nuclear fire safety by dynamic complex algorithm of fuzzy theory and system dynamics," Annals of Nuclear Energy. Vol.114, pp.149-153, 2018. https://doi.org/10.1016/j.anucene.2017.12.033
  10. Y. Cai, J. Cai, L. Xu, Q. Tan, Q. Xu, "Integrated risk analysis of water-energy nexus systems based on systems dynamics, orthogonal design and copula analysis," Renewable and Sustainable Energy Reviews. Vol.99, pp.125-137, 2019. https://doi.org/10.1016/j.rser.2018.10.001
  11. M. Radzicki and R. Taylor, U.S. Department of energy's introduction to system dynamics, a systems approach to understanding complex policy issues, version 1. Sustainable Solutions, Inc., Como, 1997.
  12. T.H. Woo, Atomic Information Technology: Safety and Economy of Nuclear Power Plants, Springer-Verlag, London, UK, 2012.
  13. H.W. Hethcote, "The Mathematics of Infectious Diseases," SIAM Review. Vol. 42, No.4, pp.599-653, 2000. https://doi.org/10.1137/S0036144500371907
  14. T. Harko, F.S.N. Lobo and M.K. Mak, "Exact analytical solutions of the Susceptible-Infected-Recovered. (SIR) epidemic model and of the SIR model with equal death and birth rates," Applied Mathematics and Computation. Vol.236, pp.184-194, 2014. https://doi.org/10.1016/j.amc.2014.03.030
  15. X. Guangyue and W. Weimin, "China's energy consumption in construction and building sectors: An outlook to 2100," Energy. Vol.195, p.117045, 2020. https://doi.org/10.1016/j.energy.2020.117045