• Title/Summary/Keyword: Energy minimization curve

Search Result 12, Processing Time 0.016 seconds

Optimization Routing Path Design of Hydraulic Hose Using Energy Minimization (Energy Minimization을 이용한 유압 호스의 최적 경로 설계)

  • Yim, Ho-Bin;Kwon, Kang;Kim, Jay-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.4
    • /
    • pp.246-252
    • /
    • 2012
  • The piping route of hydraulic hose is designed with avoiding interferences to surrounding components. However, in a real practice, the piping route is mostly decided with an expert's experiences on site due to the complexity of design. Thus, this paper proposes a design methodology of the optimized route of a hose. We use NURBS representation to describe the piping route, which is possible to be locally modified, and an energy minimization method is applied to avoid interferences to the surroundings. In other words, the NURBS curve describing a piping route is modified to meet the desired positions from minimizing the perturbation of the control points, and the strain energy of the curve is then optimized to make the curve natural. The proposed method is implemented and its feasibility is validated using the commercial CAD software, CATIA V5.

Approximate Lofting by B-spline Curve Fitting Based on Energy Minimization (에너지 최소화에 근거한 B-spline curve fitting을 이용한 근사적 lofting 방법)

  • 박형준;김광수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.1
    • /
    • pp.32-42
    • /
    • 1999
  • Approximate lofting or skinning is one of practical surface modeling techniques well used in CAD and reverse engineering applications. Presented in this paper is a method for approximately lofting a given set of curves wihin a specified tolereance. It is based on refitting input curves simultaneously on a common knot vector and interpolating them to get a resultant NURBS surface. A concept of reducing the number of interior knots of the common knot vector is well adopted to acquire more compact representation for the resultant surface. Energy minimization is newly introduced in curve refitting process to stabilize the solution of the fitting problem and get more fair curve. The proposed approximate lofting provides more smooth surface models and realizes more efficient data reduction expecially when the parameterization and compatibility of input curves are not good enough. The method has been successfully implemented in a new CAD/CAM product VX Vision? of Varimetrix Corporation.

  • PDF

Real-time Shape Manipulation using Deformable Curve-Skeleton

  • Sohn, Eisung
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.4
    • /
    • pp.491-501
    • /
    • 2019
  • Variational methods, which cast deformation as an energy-minimization problem, are known to provide a good trade-off between practicality and speed. However, the time required to deform a fully detailed shape means that these methods are largely unsuitable for real-time applications. We simplify a 2D shape into a curve skeleton, which can be deformed much more rapidly than the original shape. The curve skeleton also provides a simplified control for the user, utilizing a small number of control handles. Our system deforms the curve skeleton using an energy-minimization method and then applies the resulting deformation to the original shape using linear blend skinning. This approach effectively reduces the size of the variational optimization problem while producing deformations of a similar quality to those obtained from full-scale nonlinear variational methods.

Geometric Hermite Curves Based on Curvature Variation Minimization

  • Chi, Jing;Zhang, Caiming;Wu, Xiaoming
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.65-71
    • /
    • 2006
  • Based on the smoothness criterion of minimum curvature variation of the curve, tangent angle constraints guaranteeing an optimized geometric Hermite (OGH) curve both mathematically and geometrically smooth is given, and new methods for constructing composite optimized geometric Hermite (COH) curves are presented in this paper. The comparison of the new methods with Yong and Cheng's methods based on strain energy minimization is included.

Energy Based Multiple Refitting for Skinning

  • Jha, Kailash
    • International Journal of CAD/CAM
    • /
    • v.5 no.1
    • /
    • pp.11-18
    • /
    • 2005
  • The traditional method of manipulation of knots and degrees gives poor quality of surface, if compatibility of input curves is not good enough. In this work, a new algorithm of multiple refitting of curves has been developed using minimum energy based formulation to get compatible curves for skinning. The present technique first reduces the number of control points and gives smoother surface for given accuracy and the surface obtained is then skinned by compatible curves. This technique is very useful to reduce data size when a large number of data have to be handled. Energy based technique is suitable for approximating the missing data. The volumetric information can also be obtained from the surface data for analysis.

Design for Hydraulic Hose Routing Pathes and Fitting Angles (유압 호스의 경로 생성 및 피팅 배열각 설계)

  • Kim Y.S.;Kim J.J.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.1
    • /
    • pp.40-48
    • /
    • 2005
  • A hydraulic hose is an important part of the hydraulic system which transmits power using pressurized fluids. It allows relative motion between components at each end of the hose assembly, and it is much easier to route a hose assembly than it is to bend and install a rigid tubing assembly. Unnecessary loads, which drop the hose's pressure capability and shorten service life, depend on a hose-routing. Therefore, the Hydraulic system designers must be aware to consider unnecessary load does not affect the here. For this consideration in an early stage of the design process, CAD system must support the hose assembly routing design function which is to generate routing path and design fitting angle properly. This paper proposes 2 methods. One is to generate curves that are similar to routing paths of the real hose assembly using the energy minimization method and the optimization method. The other is to design fitting angles that are important design elements of a hose assembly using the Parallel Transport Frame. To implement the proposed methods above, commercial CAD software, CATIA has been integrated with our program.

A Geometric Active Contour Model Using Multi Resolution Level Set Methods (다중 해상도 레벨 세트 방식을 이용한 기하 활성 모델)

  • Kim, Seong-Gon;Kim, Du-Yeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.10
    • /
    • pp.2809-2815
    • /
    • 1999
  • Level set, and active contour(snakes) models are extensively used for image segmentation or shape extraction in computer vision. Snakes utilize the energy minimization concepts, and level set is based on the curve evolution in order to extract contours from image data. In general, these two models have their own drawbacks. For instance, snake acts pooly unless it is placed close to the wanted shape boundary, and it has difficult problem when image has multiple objects to be extracted. But, level set method is free of initial curve position problem, and has ability to handle topology of multiple objects. Nevertheless, level set method requires much more calculation time compared to snake model. In this paper, we use good points of two described models and also apply multi resolution algorithm in order to speed up the process without decreasing the performance of the shape extraction.

  • PDF

A chord error conforming tool path B-spline fitting method for NC machining based on energy minimization and LSPIA

  • He, Shanshan;Ou, Daojiang;Yan, Changya;Lee, Chen-Han
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.218-232
    • /
    • 2015
  • Piecewise linear (G01-based) tool paths generated by CAM systems lack $G_1$ and $G_2$ continuity. The discontinuity causes vibration and unnecessary hesitation during machining. To ensure efficient high-speed machining, a method to improve the continuity of the tool paths is required, such as B-spline fitting that approximates G01 paths with B-spline curves. Conventional B-spline fitting approaches cannot be directly used for tool path B-spline fitting, because they have shortages such as numerical instability, lack of chord error constraint, and lack of assurance of a usable result. Progressive and Iterative Approximation for Least Squares (LSPIA) is an efficient method for data fitting that solves the numerical instability problem. However, it does not consider chord errors and needs more work to ensure ironclad results for commercial applications. In this paper, we use LSPIA method incorporating Energy term (ELSPIA) to avoid the numerical instability, and lower chord errors by using stretching energy term. We implement several algorithm improvements, including (1) an improved technique for initial control point determination over Dominant Point Method, (2) an algorithm that updates foot point parameters as needed, (3) analysis of the degrees of freedom of control points to insert new control points only when needed, (4) chord error refinement using a similar ELSPIA method with the above enhancements. The proposed approach can generate a shape-preserving B-spline curve. Experiments with data analysis and machining tests are presented for verification of quality and efficiency. Comparisons with other known solutions are included to evaluate the worthiness of the proposed solution.

Improving Performance of Region-Based ACM with Topological Change of Curves (곡선의 위상구조 변경을 이용한 영역 기반 ACM의 성능개선 기법 제안)

  • Hahn, Hee Il
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.1
    • /
    • pp.10-16
    • /
    • 2017
  • This paper proposes efficient schemes for image segmentation using the region-based active contour model. The developed methods can approach the boundaries of the desired objects by evolving the curves through minimization of the Mumford-Shah energy functionals, given arbitrary curves as initial conditions. Topological changes such as splitting or merging of curves should be handled for the methods to work properly without prior knowledge of the number of objects to be segmented. This paper introduces how to change topological structure of the curves and shows experimental results by applying the methods to the images.

Computerized Analysis of Thermoluminescence from ${\gamma}$-Ray Irradiated $\alpha$-$Al_2$$O_3$ (감마선 조사된 $\alpha$-$Al_2$$O_3$의 열자극에 관한 수치해석적인 분석)

  • 김태규;이병용;김성규;박영우;추성실
    • Progress in Medical Physics
    • /
    • v.4 no.2
    • /
    • pp.49-58
    • /
    • 1993
  • The complex glow curves were split into isolated glow curves to be calculated the values of kinetic order, activation energy, escape frequency and density of initial trap from the independent glow curves using the mathematical method of thermally stimulated processes. The minimization of the intensity difference between measured and theoretical glow curve was done by the nonlinear least-square program. The results of the fitted curves were almost equal to the actual values of the parameters. Thermoluminescence from gamma ray irradiated ${\alpha}$-Al$_2$ $O_3$ over the range of 300K to 600K was split into six glow curves. The kinetic order, activation energy and escape frequency of first glow curve were obtained as 1, 1.12eV and 6.79X10$\^$12/sec$\^$-1/, respectively, which were similar to the results of other method. Also the parameters of the second and the third glow curve and so forth were calculated.

  • PDF