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Abstract — Based on the smuothness criterion of minimum curvature variation of the curve, tangent angle constraints
guaranteeing an optimized geometric Hermite (OGH) curve both mathematically and geometrically smooth is given, and new
methods for constructing composite optimized geometric Hermite (COH) curves are presented in this paper. The comparison
of the new methods with Yong and Cheng’s methods based on strain energy minimization is included.
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1. Introduction

Given cndpoint conditions {positions and tangent
vectors) can determine one and only onc llermite curve.
Although the Hermite curve has the minimum strain
energy (adopting the integrated squared second derivative
of the curve as the approximation of the strain energy)
among all C' cubic polynomial curves satisfying the
same endpoint conditions, its shape may be unplea-sant.
It may have loops, cusps or folds, namely, not geometri-
cally smooth. ITence, additional degrees of freedom are
needed to meet the geometric smoothness requirements.
Obviously, adjusting the magnitudes ol the given tangent
vectors can make the Hemmite curve geometrically
smooth, and such Hermite curve is known as geometric
Heutmite curve.

Research on geometric Hermite curves can be
classified into two categories. The-first one focuses on
building a low degree geomctric Ifermite curve with
high order geometric continuity and approximation accuracy.
The second one focuses on producing a G* gcometric
[crmite curve without loops, cusps and folds. Meek and
Walton [6,7] use a T-cubic curve to get pleasing shape
by implicitly restricting (he directions of the input
tangent vectors. T-cubic curves can be joined with
circular arcs to form nice spirals if the curve scgment is
short enough. Yong and Cheng [9] present a new class of
curves named optimized geometric Hermite (OGH)
curves, such a curve is defined by optinizing the
magnitudes of (he endpoint tangent vectors in the
Hermite interpolation process i order to minimize the
sirain energy ol the curve, and they also give the
geometric smoothness conditions and techniques for
constructing 2-segment and 3-segment composite optimized
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geometric Hermite (COH) curves. Hence, an explicit
way can be used to quantize the smoothness of a curve
in the geometric Hermite interpolation process both
mathematically and geometrically. However, the criterion
to measure the smoothness of a curve is not unique,
usually minimum strain energy (MSL) or minimum
curvature variation (MCV) is used. Yong and Cheng use
MSE as the smoothness criterion, but it cannot make (he
curvature variation minimum at the same thme. Hence,
the curves may have unpleasing shape in some cases.

For above disadvantage, MCV is used as the new
smoothness criterion of curve in this paper and the
integrated squared third derivative of curve is chosen as
the approximate form of the curvature variation, ie.,
object function. The extended definitions of OGH and
COH curves and the tangent angle constraints (tangent
direction preserving conditions and geometric smoothness
conditions) under which an OGH curve would be
mathematically and geometrically smooth are given.
New methods for constructing 2-segment and 3-segment
COH curves are presented, and by extension, they can
cover tangent angles of all possible cases. Finally, the
COH curves bascd on new criterion are compared with
the COH curves by Yong and Cheng.

2. Description of the problem

The extended definition of the optimized geometric
Hermite (OGI1) curves based on MCV is given first.

Definitien 1 Given two endpoints Py and Py, and two
endpoint tangent vectors ¥, and ¥}, a cubic polynomial
curve P(1), 1 = {ty, #,], is called an optimized geometric
Hermite (OGH) curve with respect to the cndpoint
conditions { Py, £, Vo, V1) il it has the smallest curvature
variation among all cubic Hermite curves 7 (1), t&=[#, 11}
satistying the following conditions:

P(t)=Py, P(1)}=P,P(1y)= aVo, Pt )= oV, 1)



http://www.ijcc.org
mailto:peace_world_cj@hotmail.com

66  International Journal of CAD/CAM Vol. 6 No. 1, pp. 65~71

where @ and @, are arbitrary real numbers, and the
cubic Hemmite curve P(#), t< [f, 4], satisfying the
constraints (1) can be expressed as

P()=(2s+1)(s-1 p,+(=2s+3)sP,
+(1-5) st~ 1)@ Vo (s-Ds’(h~tya V- (2)

where s = (f — &)/ () — fo). The object function, i.c., the
approximate curvature :vag'ationzof the curve_I_J(t) on [t,
t] is defined as E= L' [P()] dt, where P"(¢) is the
third derivative of P(z)"

Such an OGH curve absolutely exists and has the
smallest curvature variation, i.e., the curve is mathe-
matically smooth under such smoothness criterion.
However, there exist two matters: one is that the end-
point tangent vectors of the OGH curve may be opposite
to the given endpoint tangent vectors; and the other is
that it may have loops, cusps or folds. Either of these is
certainly not desired. So we should discuss the tangent
angle constraints that ensure tangent direction preserving
and geometric smoothness of the OGH curve.

3. Tangent angle constraint

The explicit values of ¢y and ey which define the
OGH curve P(f) can be got easily from definition 1. The
theorem is as follows:

Theorem 1 Given two endpoints Py, and P, two
endpoint tangent vectors ¥, and ¥, and a parameter
space [to, 11], the value of o and ¢ related to an OGH
curve P(t), t=[t, #] with respect to the endpoint
conditions {Po, Py, Vs, V1} is obtained as follows:
if ¥, and ¥, are unparallel, then

. 2[¢P, —Po); Vo]sz—z[(P, iPO)- VIVe V)
[VO(VI )_(Vo’ Vl)-](fu"ﬁ)

_2[(P=Po) VJVi2I(P\~Py)- Vol (Vo )
Vo ()= (Vo V) Wig—1)

(3)

241

if ¥, are V; parallel, then o and o satisfy the equation

AP —Py)- Vo

2 _
Vot Vo V= P
1—fo

(4).

_ Proof. From Eq. (2), the curvature variationof E of
P(f) can be represented as a function of a and & as
follows:

p=18_p_py- 1B (p P )aVyra 1)
(n—1) (1—1)
+—28_(avyra vy

3
The ('_;fitﬁfﬁ)zation problem is equivalent to finding the
minimum point of the above equation. Theorem | can be

obtained by solving the corresponding linear equations.

a and «, defined in Eqgs. (3) and (4) are called the
optimized coefficients of the tangent vectors of P(f) at 4
and #,, respectively. Obviously, o and ¢« are not
necessarily positive, so the magnitudes of the endpoint
tangent vectors of the OGH curve may be zero, or the
directions may be opposite to the given tangent vectors.
Neither of these is desired. Hence, we discuss the
tangent angle conditions ensuring @ and o positive,
subsequently.

Theorem 2 P(?), tE [#, 4], is an OGH curve with
respect to the endpoint conditions {Po, P, Vo, ¥}, @
and ¢ are the optimized coefficients of the tangent
vectors of P(7) at # and #,, respectively. a; and o are
positive if and only if the following tangent direction
preserving conditions

sin(@ — ¢)¥ 0 and cos 6 > cos (0 -2¢)
and cos ¢ > cos (¢ ~26)
oré=g¢ and cos & >0
or & —p=+n (5)

are satisfied, where or #is the counterclockwise angle form
—
from vector PP, to V,, ¢ is the counterclockwise angle

from vector to r.Pl to V), 8, ¢ € [0,27), and 6 @ are
named tangent angles.

Proof, Without loss of generality, we assume P, =[0,0]",
P, =[1,0]", ¥, and ¥, are both unit vectors. Thus,
Vo = [cos@ sin6]", V, = [cose, sine]”. We discuss in two
cases:

1) When ¥yand ¥ are unparallel, substitute the coordinates
of Py, Py, ¥, V) into Eq.(3), we obtain

%=2[cos 6';cosgo §os(6*—(o)]
sin"(6-g)(#,—£)

o _2[cos goz—cosé cos( 8- ¢}]
sin"(&-)(1,—4)

Obviously, V, are V| unparallel if and only if sin(&—
@) # 0, which can ensure denominator of the above two
equations not to be zero. Therefore,

o > 0, if and only if cos@ —cos@cos(& — @) >0,
a, > 0, if and only if cosg —cos@cos(f — ¢)> 0.
Simplifying the above two inequalities, we get
cos8 > cos(€ —2¢) and cos@> cos(p —28).
2) When V, and V; are parallel, ie., sin(6-¢}=0, q
and ¢ merely satisfy Eq. (4), substitute the coordinates

of Py, P,, Vy, V| into Eq. (4), we obtain

o+ &y cos(8—@)=2cos8/(f) —1y) (6)
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a) If ¥, and V| are in the same direction, ie., 8= ¢,
then Eq. (6) is equivalent to

apt+ oy =2 cos 8/(t) —hy).
Thus, ay,a; > 0 if and only if cos & > 0.

by If ¥, and ¥, are in the opposite direction, i.¢., & -
¢=1n, then Eq. (6) is equivalent to

ay — oy =2cos 8/ (f) —t)

Obviously, whatever &is, we can always find positive
ay and ¢ that satisfy the equation.

Summarizing the above two cases 1) and 2), we obtain
the conclusion of theorem 2.

If the given tangent angles satisfy the condition (5),
then the constructed OGH curve can preserve directions
of the given tangent vectors and has the smallest
curvature variation, i.e., mathematically smooth, but it
may not be geometrically smooth, ie. it may have
loops, cusps or folds. So we discuss the geometric
smoothness conditions below.

Theorem 3 P(f) = [x(1), WD), t< [, 1] is an OGH
curve with respect to the endpoint conditions { P, £\, Vo,
1}, then P(#) is geometric smoothness if it satisfics the
conditions:

sin(@—@)7 0 and tan Gtan ¢ <0 N
or sin(8 — @) = 0 and tan 0 < ¢ cos@< 2 cos’ &

where a is the optimized coeflicient of the tangent
vector of P(r) at 1,, 6¢ are defined in theorem 2.
conditions (7) is called the geomctric smoothness
conditions.

Proof. To make the OGII curve geometrically smooth,
.., loop-, cusp- and fold-free, it’s sufficient Lo guarantee
V1 € [to, ;). X'(¢) > 0 (or x'(r) < 0). Then obviously, there
aren’t any points on [#, #] making x'(r} =0, thus P(s)
doesn’t have any cusps. Moreover, x{(7) is an increasing
(or decrcasing) function in this case, thus P(¢) doesn’t
have any loops or folds.

Without loss of generality, we assume Py,=[0,0]",
P, =[1,01, lto,i}=10,1], and ¥, and ¥, are both unit
vectors, then Vy=[cos & sin 8], ¥, =[cos ¢, sin o).
Obviously, all these assumptions don’t change the sign
of x'(¢). Hence, we have

X(0) =2+ aycosB+ oy cos@l + [3 —2ag cosé — o cosglf”
+ o cosét
then

W) =3[-2+ aycosf+ e cos@lf + 23 — 24 080 — o coselt
+ a €0s0 )

We discuss in two cases:

1) Whileare ¥, and ¥) unparallel, i.e.,, sin(@— @) * 0, o
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and o, are obtained from Eqs. (3}, i.e.,

= 2[cos 6'—coﬂs @ cos(G-9)]
sin"(&-¢)

- 2[cosga—0(;sf9 cos{ 8-p)]
sin (G-¢)

Substituting to (8), we get

X(H)= 2[005252)—(:052(0]‘_2005 &sing
sin*(6-¢) sin(6-¢)

Let notate the coefficient of ¢ in x'(£), then
a) When cos® p=cos’8, 4 =0. Then, V¢ €[0,1], X'(¢)
>0 (or 0), as long as

LSNP, 051 <), e, cos sin 9 0.
sin( & —)

Obviously, the condition is true if tan #tan ¢ <0.
b) When cos® @ = cos” 8,4 = 0. Then V¢ E[0,1], x'(#)
>0 (or <0), as long as

X(0)= 2¢0s8sing

sin( &-¢)
(1 )=2sin9co§go sin(6—¢)>0
sin’(6-¢)
or
¥(0)= 2cgso9$ing <0
sin{ 8-¢)
w(1)= 25in000§¢ sin(6—¢)<o
: sin“ (0 @)

the above inequalities are equivalent to MQ <,
i.e., tan @tan @< 0. sinécosg

2) While ¥, and ¥, arc parallel, i.e., sin(@ — ¢) = 0,
Gyand oy merely satisfy Eq. (4).

(D If ¥, and ¥, are in the same dircction, i.e.,80= ¢,
Eq.(4) is equivalent to & + & = 2cos0.

Substituting to (8), we get

x(f) = —6sin® 67 + 2(3 — ¢ cosP —2c08* O} + a4 cosb

Let B notate the coefficient of £ in x'(#). Obviously,
B < 0. Thus,

2) When 6= 0, B=0, then VrE[0,1], x() > 0 (or < 0),
as long as

{x'(0)= a,>0 X'(0)= ay<0
or "
x'(1)=2-¢,>0 x'(1)=2—ay<0

Simplifying the above inequalitics, we get 0 < ¢ <2.
b) When &=z, B=0, then V¢ &[0,1], x'(z) >0 (or
<0), as long as
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¥(1)=2+g,>0 X(1y=2+ap<0

{x'(0)=—a0>0 {x‘(0)=—ao<0
or

Simplifying the above inequalities, we get -2 < ¢ 0.

¢) When sin+ 0, B<0,then V ¢ €[0,1], x'() > 0 (or
<0), as long as

[x'({}) = ocos 6>0

()= 2c0s°8 —Qcos &>0

or

x'(0)=qycos 6 <0

x\( l)=200526'-a0c058 <0

Simplitying the above inequalities, we get ( < o cos& <
2¢0s%6.

Obviously, the conclusions of a) and b) can be
included in ¢), i.e., 0 < q cos8 < 2c0s°6.

® If ¥, and ¥, are in the opposite direction, i.e., &~
@ =tx, the proof process is similar to D .

Summarizing the above two cases 1) and 2), we obtain
the conclusion of Theorem 3.

From Theorems 2 and 3, we conclude that conditions
(5) and (7) can both be satisfied when (8,¢) (0, #/2) x
G/ 22m\ V@3l 2,2x) x (0,77 2). Obviously, if the given
tangent angles are in the region, the corresponding OGH
curve is the most ideal for having minimum curvature
variation, preserving tangent vector directions and loop-,
cusp- and fold-free. While the curve is not pleasing if
either (5) or (7) cannot be satisfied, hence, we should
consider COH curves, which can achieve the whole
smoothness requirements by ensuring automatic satisfac-
tion of conditions (5) and (7) for each OGH segment.

L A
B \%J

/gaﬁ

4. Methods for constructing COH curves

The definition of a COH curve is as follows:

Definition 2 A piecewise cubic polynomial curve is
called a composite optimized geometric Hermite (COH)
curve if the curve is G' and each segment of the curve is
an OGH curve.

Below, for the given tangent angles not satisfying (5)
and (7) simultaneously, the corresponding methods for
constructing 2-segment or 3-segment COH curves will
be given. Firstly, methods for constructing 2-segment
COH curves are given. In these methods, the joint and
the tangent vector at the joint of the two OGH segments
are denoted Q and V), respectively. The counterclock-
wise angles at the endpoints of these OGH segments
with respect to their base lines are denoted ¢y, ¢,, ¢; and

&4 respectively (see Fig.1 (1)-(2)).

Method ML1. If (6, ¢) € [0, 7/2) x (0,77/2), then O
are V, determined by setting

&= 6 0e(0.22) Q , on the perpendicular bisector
4, 6=0
of PoPr, and ¢2={(9+ 03,  6=(0n2)
(6+p)6, 6=0

Method M2. If (0, p) € [0, 7/2) x (737/2), then O
and V), are determined by setting

S =012, g=Q2n-¢)/2,and ¢ = ¢s.

Methods for constructing 3-segment COH curves are
given next. In these methods, the joints and the tangent
vectors at the joints of the three OGH segments are
donatedand Q,, Q) and ¥, ¥V, respectively. The coun-
terclockwise angles at the endpoints of these OGH
segments with respect to their base lines are donated

B, 2, B3, s B and s respectively (see Fig. L (3)-(6)).

\/ A
Z¢4\ v

(1) Method M1 (2) Method M2
Z
A N -
[
e
g 4
’ Q\ \¢4 Vq' an A
(4) Method M4 (5) Method M5 (6) Method M6""

Fig. 1. Methods for constructing 2-segment and 3-segment COH curves.
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Method M3. If (6, ¢) [0, 71/ 2) x (7/2,7, then O,
O\, Vo, V1 are determined by setting

o, Oc (0,72
¢1={ o e:é ) [2.O|-[BPl/ 3.6,= 1

by _[#/2,
~=39, {4?1’/9,

Be(xn/2,7) and d,=d; .

Method M4. If (8, ) < [7/2,m) % (0,7/2], then O,
01 Vg0, V1 are determined by setting

5=l 6=n2
" 1728304, O<(n2,7)

P2 )=P.P Y 8,

&=, G0, bisecting the counterclockwise angle
—
from Vyoto QyPy, = ¢/2, and ¢ = ¢s.

Method M3, If (8, ) = (n/2,7) x (7! 2m), then O,
01 Va0, Vy are determined by setting

& =576 2013 P.0o|=|P.P.V 6. 8=, 5@

bisecting the counterclockwise angle from Vo to OuP,,

574/8—p/4, e[177/30, 7
#= o4, vel 1 and du=s.
@-a12, pe{r2,177/30]

Method M6, If (6, 0} € (/2,7 < {x/32/2), then
Oo. Q1. Vg0, Vn are determined by setting

82, Oe(a?2, _—
¢|:{ = F)’ IPOQ@I=| POPII( 2, QO
7r/16, O=7x

PP, ¢6={”“”’2’ PTITD. gom g and =4,

77/16, p=n

It can be easily obtained that the tangent angles of
each OGH segment of the COH curves generated by
above methods are all in the region (0, 7/2) x(37/2,
2 U (3x/22m % (0,7/2), so these methods can
guarantee automatic satisfaction of conditions (5) and (7}
for each segment and consequently, the satisfaction of
the whole smoothness requirement of the COH curve.
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5. Extension of the constructing methods

Let MO denote the method generating OGH curves
(i.e., l-segment COH curves). Obliviously, the above
seven methods MO~M6 cannot cover the entire &p-space,
[0.27) % 0,27). So we extend the methods as follows:

P(f) is an COH curve generated by method M (shown
in Fig. 2), P(¢) is a new curve symmetric to P(f) with
respect to the base line of P(f), PX(f) is a new curve
reversing P(¢), and P*7(f) is a new curve symmetric to
PA(5) with respect to the base line of PA(f), then the
methods generating P7(£), P(¢) and P*7(z) are called M,
MR and M*", respectively.

If the applicable region of method is (8,¢) < [@,8),
x [@,92], then the applicable regions of methods M,
MR and M* are (87,07) €E 22— 6y, 27 -61,) % 27 -
@227~ @), (6%¢") € 27 -0 27-0,] < [27- 6,
27 - ) and (87 ,0") E g, 92) 161, 6:) respectively,
all these regions are generally called extension regions of
M. Obviously, after above extension, methods M, M/,
MR and M*,i=0,1...6, with the addition of 6=0, ¢=0
{OGH curve is a line in this case} can cover the entire
p-space, [0,27) x [0,27).

6. Comparison of the COH Curves with
Different Object Functions

The discussion above gives the tangent angle consira-
ints that ensure the OGH curves with the object function
of curvature variation (i.e., based on the smoothness
criterion of MCV) mathematically and geometrically
smooth and new methods for constructing COH curves,
Following these curves are compared with those COH
curves based on MSE by Yong and Cheng.

As shown in Fig. 3, (a)-{h) are examples of the COH
curves based on MCV being better than those based on
MSE; (i)-(n) are examples of the COH curves based on
MSE being better than those based on MCYV; and (0)-(p)
are Examples of the COH curves with two object
functions both being unpleasing. Note : Symbols (D and
@ in figure denote the COH curve based on MCV and
the COH curve based on MSE, respectively.

From the examples, we can draw the conclusion as
follows:
when
(6,0 [0, /3] [0, AW U[2 23, Al % [ 7,3 2NN 22,2 7/3)

(72,2723 [ AR W23, By [ /6, 2} [ A3, 273}

_P0y. PO_ P LN 4
-.\4‘\ . 7 ;? - -..-”’\::‘\ g """’\,\ ’/I
- g e
Yo ___,x’f \ Ty '/’\_\
N N e
P(r) PY(D

Fig. 2. Extension of methods for constructing COH curves.
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(@) O=n/6,0=Tr/12 by 8=x/3,p=r/3
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d) 0=57/6,p=7/6

) 0=rn/dp=2r7/3

(e) 8=2x/3,p=4x/3 ) 0=57z/6,p=5n/4

(&) 0=Tn/12,p=11x/12

(h O=nldp=x

() @=n/d,p=57/3 () 6=7/3,p=4x/3

@

Fig. 3. Comparison of thc COH curves with different object functions.

x[47/3,3 772}, Shapes of the COH curves based on MCV
are more pleasant.
When,
(6,9) [0, 73)x [ 7,2 70\ (/3,2 73] x (3 /2,5 7/3]

Ul a3, 72 <[ 74 a3\ Ul 73,2 7/3] x [ /3,2 2/3] ,
shapes of the COH curves based on MSE are more
pleasant.

When (8¢ el23,7Ax(w2x) , shapes of the COH
curves based on MCV and MSE arc both some
unpleasing.

We mark the above threc regions RI, R2 and R3.
After extension, they can cover tangent angles of all
possible cases, and the results of comparisons in the
extension regions are the same as their rcspective
original regions. Furthermore, the proportion of the
region R1 (o the entirc -space is approximately cqual to
that of the region R2.

7. Conclusion

The comparison above shows that the smoothness
criterion of curves is not unique, so different ones should
be adopted in different cases to achieve morc pleasing
shapes. This paper gives the conclusion that which
criterion generates better curves when the tangent anglcs
in different regions. Qur discussion shows that the
combination of the new methods with the Yong and
Cheng’s methods can achieve a much better result. To
the region in which curves based on two criterions are

k) O=n/d,p=5r/4

“ s
M) 0=r/3p=T2112 (m)0=57/12,0=397/24 (0)8=57/6,p=27/3

() 0=r/4,9=377/24

() 8=57/6,p=5x/6

both unpleasant, new criterion should be considered,
such as minimum curve length, that’s the future work.
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