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Abstract - Based on the smoothness criterion of minimum curvature variation of the curve, tangent angle constraints 
guaranteeing an optimized geometric Hermite (OGH) curve both mathematically and geometrically smooth is given, and new 
methods for constructing composite optimized geometric Hermite (COH) curves are presented in this paper The comparison 
of the new methods with Yong and Cheng's methods based on strain energy minimization is included.
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1. Introduction

Given endpoint conditions (positions and tangent 
vectors) can determine one and only one Hermite curve. 
Although the Hermite curve has the minimum strain 
energy (adopting the integrated squared second derivative 
of the curve as the approximation of the strain energy) 
among all C1 cubic polynomial curves satisfying the 
same endpoint conditions, its shape may be unplea-sant. 
It may have loops, cusps or folds, namely, not geometri­
cally smooth. Hence, additional degrees of freedom are 
needed to meet the geometric smoothness requirements. 
Obviously, adj 니sting the magnit니des of the given tan응ent 
vectors can make the Hermite curve geometrically 
smooth, and such Hermite curve is known as geometric 
Hermite curve.

Research on geometric Hermite curves can be 
classified into two categories. The first one focuses on 
building a low degree geometric Hermite curve with 
high order geometric continuity and approximation accuracy. 
The second one fbc니ses on producing a G1 geometric 
Hermite curve without loops, cusps and folds. Meek and 
Walton [6,7] use a T-cubic curve to get pleasing shape 
by implicitly restricting the directions of the input 
tangent vectors. T-cubic curves can be joined with 
circular arcs to form nice spirals if the curve segment is 
short eno니gh. Yong and Cheng [9] present a new class of 
curves named optimized 응eometric Hermite (OGH) 
curves, such a curve is defined by optimizing the 
magnitudes of the endpoint tangent vectors in the 
Hermite interpolation process in order to minimize the 
strain energy of the curve, and they also give the 
geometric smoothness conditions and techniques for 
constructing 2-segment and 3-segment composite optimized 

geometric Hermite (COH) curves. Hence, an explicit 
way can be 니sed to quantize the smoothness of a curve 
in the geometric Hermite interpolation process both 
mathematically and geometrically. However, the criterion 
to measure the smoothness of a curve is not unique, 
usually minimum strain energy (MSE) or minimum 
curvature variation (MCV) is used. Yong and Cheng use 
MSE as the smoothness criterion, b니t it cannot make the 
curvature variation minimum at the same time. Hence, 
the curves may have unpleasing shape in some cases.

For above disadvantage, MCV is 니sed as the new 
smoothness criterion of curve in this paper and the 
integrated squared third derivative of curve is chosen as 
the approximate form of the curvature variation, i.e., 
object fiinction. The extended definitions of OGH and 
COH curves and the tangent an잉e constraints (tangent 
direction preserving conditions and geometric smoothness 
conditions) under which an OGH curve wo니d be 
mathematically and geometrically smooth are given. 
New methods for constructing 2-segment and 3-segment 
COH curves are presented, and by extension, they can 
cover tangent angles of all possible cases. Finally, the 
COH curves based on new criterion are compared with 
the COH curves by Yong and Cheng.

2. Description of the problem

The extended definition of the optimized geometric 
Hermite (OGH) curves based on MCV is given first.

Definition 1 Given two endpoints Po and F、and two 
endpoint tangent vectors VQ and f a c니bic polynomial 
curve P(t), t W [/0, is called an optimized geometric 
Hermite (OGH) curve with respect to the endpoint 
conditions {R, Vx} if it has the smallest curvature 
variation among all cubic Hermite curves [Zo, 
satisfying the following conditions:

戸。o) = R),戸G)=R,戸"o)=a*o, 戸(4)=%匕 (1) 
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where aQ and are arbitrary real numbers, and the 
cubic Hermite curve P (f), tu [?0, /J, satisfying the 
constraints (1) can be expressed as

P(f) = (2s+l)(s-l)2p()+(-2s+3)s R

+(1 -s)s(tx f) a*o +(s-1 )孫(匕-z0)V! (2)

%----------------- $ 5 2< Uo(k)-顷"1)如"1) ⑶

a _2[(R-Po)叫]仃_2[(R_R))%](f().儿) 

어- 片(仃)-復0叫)如0一上)

if are Vx parallel, then 勿 and ax satisfy the equation

p.2 v v 2(户1-尸0)項0 ⑷
。(，(广"1 叫=---- --------- (4)・

Proof. From Eq. (2), the curvature variationof E of 
P(t) can be represented as a function of %)and ax as 
follows:

£=一岑 -一씌

(?i~?o) do)

+-
The 細#讪ation problem is equivalent to finding the 

minimum point of the above equation. Theorem 1 can be

where s = (t-to)/ 一 而).The object function, i.e., the 
approximate curvature variation of the curve_P(0 on 血 

tx\ is defined as E= 기”(f)] dt, where P,n(0 is the
third derivative of P(f)°.

Such an OGH curve absolutely exists and has the 
smallest curvature variation, i.e., the curve is mathe­
matically smooth under such smoothness criterion. 
However, there exist two matters: one is that the end­
point tangent vectors of the OGH curve may be opposite 
to the given endpoint tangent vectors; and the other is 
that it may have loops, cusps or folds. Either of these is 
certainly not desired, So we sho니Id disc니ss the tangent 
angle constraints that ensure tangent direction preserving 
and geometric smoothness of the OGH curve.

3. Tangent angle constraint

The explicit values of cr0 and % which define the 
OGH curve P(t) can be got easily from definition 1. The 
theorem is as follows:

Theorem 1 Given two endpoints Po and R, two 
endpoint tangent vectors and V}, and a parameter 
space [Zo, &], the value of cr0 and a\ related to an OGH 
curve P(t), tU [而，tx\ with respect to the endpoint 
conditions {PQ, R, K), Vx} is obtained as follows: 
if Vo and V\ are unparallel, then

2[(R¥o)K优_2[(r_r).勺质).勺

obtained by solving the corresponding linear equations.
Oq and a\ defined in Eqs. (3) and (4) are called the 

optimized coefficients of the tangent vectors of P(f) at t0 
and respectively. Obviously,佃 and ax are not 
necessarily positive, so the magnitudes of the endpoint 
tangent vectors of the OGH curve may be zero, or the 
directions may be opposite to the given tangent vectors. 
Neither of these is desired. Hence, we discuss the 
tangent angle conditions ensuring and ax positive, 
subsequently.

Theorem 2 Pit).作[而，扪，is an OGH curve with 
respect to the endpoint conditions {/%, Pi, 丫1},阪 

and ax are the optimized coefficients of the tangent 
vectors of P(t) at tQ and respectively. «b and are 
positive if and only if the following tangent direction 
preserving conditions

sin(。一 #沪上 0 and cos 0 > cos (0 —2。) 

and cos (p > cos (q-Iff)
or 0 = 0 and cos 0 > 0
or -(p=노n (5)

are satisfied, where or(9 is the counterclockwise an이e form 
------)

from vector P^PX to <p is the counterclockwise ar咯le 

from vector to PR to V6, (p W [0,2^), and are 
named tangent angles.

Proof. Without loss of generality, we assume Po = [0,이七 

Pi = [1,0]^ Vq and are both unit vectors. Thus, 
Vq = jcosg sin0^, Vx = [cos 仞 sin(p^. We discuss in two 
cases:

1) When Vq and V\ are unparallel, substitute the coordinates 
of Po, Pi, Vq, V\ into Eq.(3), we obtain

2[cos6「cos伊 cos(0-伊)]
。0= 9

sin (0—0)(7i TQ

2 [cos。一 cos 0 cos(。一 d
a\ = 9

sin (0*) (71—£)

Obviously, VQ are Vx unparallel if and only if sin((9- 
(P)丰 0, which can ensure denominator of the above two 

equations not to be zero. Therefore,

Ob > 0, if and o이y if cos0 - cos^ cos(6*  - (p) > 0, 

a\ > 0, if and only if cos。—cos0cos(0-例 > 0.

Simplifying the above two inequalities, we get

cos。> cos(0—2。)and cos。〉cos(°-20).

2) When and Vx are parallel, i.e., sin(。一 °) = 0, Q) 
and ax merely satisfy Eq. (4), substitute the coordinates 
of Po,户1, Vq. Vx into Eq. (4), we obtain

% cos(& - @) = 2 cos。/ (" - to) (6)



Jing Chi, et al. Geometric Hermite Curves Based on Curvature Variation Minimization 67

a) If Vq and Vx are in the same direction, i.e., 0= (p. 
then Eq. (6) is equivalent to

风 十 仪1 = 2 cos 0/一 而)・

Thus, c^,a\ > 0 if and only if cos 0 >Q.

b) If Vq and V\ are in the opposite direction, i.e., 0- 
S = 土元，then Eq. (6) is equivalent to

(为一 a】=2 cos 0! (*  -to).

Obviously, whatever 3 is, we can always find positive 
Oq and a\ that satisfy the equation.

Summarizing the above two cases 1) and 2), we obtain 
the conclusion of theorem 2.

If the given tangent angles satisfy the condition (5), 
then the constructed OGH curve can preserve directions 
of the given tangent vectors and has the smallest 
curvature variation, i.e., mathematically smooth, but it 
may not be geometrically smooth, i.e., it may have 
loops, cusps or folds. So we discuss the geometric 
smoothness conditions below.

Theorem 3 P(t) = [%(/),如)E 作[/0, /J is an OGH 
curve with respect to the endpoint conditions {R), P、 
J*},  then P(t) is geometric smoothness if it satisfies the 
conditions:

sin(<9 - q)产 0 and tan 0 tan < 0 (7)

or sin(0 一 0)= 0 and tan 0 < 佃 cos。< 2 cos2 0

where Oq is the optimized coefficient of the tangent 
vector of P(f) at r0, d.(p are defined in theorem 2. 
conditions (7) is called the geometric smoothness 
conditions.

Proof. To make the OGH curve geometrically smooth, 
i.e., loop-, cusp- and fold-free, ifs sufficient to guarantee 
Vt U [/0, rj, x\t) > 0 (or x'(r) < 0). Then obviously, there 
aren't any points on t(\ making x'(£) = 0, thus P(i) 
doesn't have any c니sps. Moreover, x(f) is an increasing 
(or decreasing) function in this case, thus P(f) doesn't 
have any loops or folds.

Without loss of generality, we assume Po = [0,0]^ 
R = [1,°E [Vi] = [0,1], and and are both unit
vectors, then VQ = [cos & sin V\ = [cos (p, sin 
Obviously, all these assumptions don't change the sign 
of x0). Hence, we have

M7) = [或 + Q)cos0+ a\ cos(이F + [3 -2a()cos0 - ax cos^/2
+ Oq COS0t

then

雨=3[或+ q)cos6)+% cos^ + 2[3 —2a)cos0—aicos0卩
+ Oq COS0 (8)

We discuss in two cases:
1) Whileare *)and V\ unparallel, i.e.„ sin(0—0)手 0, % 

and(Zi are obtained from Eqs. (3), i.e.,

2[cos0—cos0 cos(0—0)] 
% =

血2(。—0)

_ 2[cos 0—cos 0 cos(。一 仞)]% — - 
sin (0-0)

Substituting to (8), we 음et

2[cos标-coSoL 2cos6sin。

X{) sie(0-切 sin(久仞.

Let notate the coefficient of t in x'U), then
a) When cos2 coGQ A = 0. Then, Vt U [0,1], x'(0

> 0 (or 0), as long as

一奕쓰丝亚 >0(or<0) ,i.e., cos Qsin 0女 0- 
sin(0-(p)

Obviously, the condition is true if tan ^tan(p<0.
b) When cos2 (p 寸二 cos2 &丰 0. Then^[0,1], x'(/) 

그 0 (orv 0), as long as

x'(0) = 2cosOsin0 
sin(0-(p)

W)=
2sin&cosp sin(O-^)、0 

sin(0-(p)
or
成0)= 奕쓰竺映〈°

sin(。-0)

Y( ])_ 2sin0 cos(p sin( °
sin2(0-^?)

the above inequalities are equivalent to *興而叩?  <0, 
i.e.,tan9ta"<0. 泗化。沖

2) While Vq and V\ are parallel, i.e., sin(。一 伊) = 0, 
0oand CZ] merely satisfy Eq. (4).
① If and V\ are in the same direction, ie,6)= (p.

Eq.(4) is equivalent to+ % = 2cosfi
Substituting to (8), we get

x\t) = -6sin2 6峪 + 2(3 - 以)cos。— 2cos?6少 + ccq cos(9

Let B notate the coefficient of 产 in Obviou이y,
B < 0. Thus,

a) When 3=0,0, then Vrq0,l], x\f) >0(or< 0), 
as long as

Jx*(0)=  6Z0>0
]双1) = 2_%>0

jY(0) = a()v0
[x[l) = 2_%v0

Simplifying the above inequalities, we get 0 v % <2.
b) When 0- n. B = 0, then f U [0,1], x*(0  > 0 (or

< 0), as long as
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Jx'(O) = -«o>O jx'(O)=-ao<O
|x'(l) = 2+tz0>0 [x，⑴= 2+%v0

Simplifying the above inequalities, we get 0.

c) When sin。丰 0, B < 0, then V t U[0,l], x'(r) > 0 (or 
< 0), as long as

x'(0) = %cosQ >0

x'(l) = 2cos2^-dfQCOs0 >0

or

xT(0) = «qCOS0 <0
<
x'(l) = 2cos2^-agcos^ <0

Simplifying the above inequalities, we get 0 < cos。< 

2cos26
Obviously, the conclusions of a) and b) can be 

included in c), i.e., 0 v % cos。< 2cos26*.
② If and Vx are in the opposite direction, i.e., 0~ 

(p=±j\ the proof process is similar to ①.
Summarizing the above two cases 1) and 2), we obtain 

the conclusion of Theorem 3.
From Theorems 2 and 3, we conclude that conditions 

(5) and (7) can both be satisfied when (& °) U(0, nt 2) x 
^3兀/2,2砂、丿(3几/2,2끼 x ((成/2). Obviously, if the given 

tangent angles are in the region, the corresponding OGH 
curve is the most ideal for having minimum curvature 
variation, preserving tangent vector directions and loop-, 
cusp- and fold-free. While the curve is not pleasing if 
either (5) or (7) cannot be satisfied, hence, we sho니Id 
consider COH curves, which can achieve the whole 
smoothness requirements by ensuring automatic satisfac­
tion of conditions (5) and (7) for each OGH segment.

4. Methods for constructing COH curves

The definition of a COH curve is as follows:
DeHnition 2 A piecewise cubic polynomial curve is 

called a composite optimized geometric Hermite (COH) 
curve if the curve is G1 and each segment of the curve is 
an OGH curve.

Below, for the given tangent angles not satisfying (5) 
and (7) simultaneously, the corresponding methods for 
constructing 2-segment or 3-segment COH curves will 
be given. Firstly, methods for constructing 2-segment 
COH curves are given. In these methods, the joint and 
the tangent vector at the joint of the two OGH segments 
are denoted Q and Vq. respectively. The counterclock­
wise angles at the endpoints of these OGH segments 
with respect to their base lines are denoted 侦 物，俱 and 
^4 respectively (see Fig.l (1)-(2)).

Method Ml. If(Q (p) u [0,力2) x (0”/2), then Q 
are VQ determined by setting

3, 6k (0*2)
0 = ] Q, on the perpendicular bisector

of P()R, and 02-牛、，
[(0+0)/6, 0=0

Method M2. If (0, (p) W [0, 7i! 2) x (%M/2), then Q 
and VQ are determined by setting

奴=0/2, S = Q兀-伊)/ 2, and 由=肉.

Methods for constructing 3-segment COH curves are 
given next. In these methods, the joints and the tangent 
vectors at the joints of the three OGH segments are 
donatedand Qo, Q\ and %, VqX, respectively. The coun­
terclockwise angles at ttie endpoints of these OGH 
segments with respect to their base lines are donated 
S,©5 and ©6 respectively (see Fig. 1 (3)-(6)).

(4) Method M가

Fig. 1. Methods for constructing 2-segment and 3-segment COH curves.

⑵ Method M2 (3) Method M3
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Method M3. If (0, (p) u [0, nIT) x (刀72,龙),then Qq, 
Qx, VqQ. Vq\ are determined by setting

A = ?；18 f'汐2),|同=|曲 1/302=0, 

普/18,。=0

U钮 J"，%(Q* ),and 宙f

2 6 [4zr/9,

Method M4. If ((9, ,) U 貝/ 2,加 x (0,^/2], then 0, 
Qi, 财, 矿찌 are determined by setting

©J物， 缶汐2 伊向="用/8,
〔7刀/8-3例，处S2兀)

----- > .

©2=Wi，QoQi bisecting the counterclockwise angle 
------ >

from VqQ to QqPq ,。6 = 0 2, and 板=妳

Method M5. If (Q q» V (n! 2,끼 x (几/ 2冗，), then 0, 
Qlf VqQ, Vq} are determined by setting

0 = X/ 6 -20/3,1001 = I瓦用/ 6,宀|,函 

------ y 
bisecting the counterclockwise an이e from to 0)P” 

, 〔5勿8-°/4, 伊 w[17 刀/30, 끼
。6리 」, and 宙 =(法.

壶一i/12, (pe [^/2,17^/30]

Method M6. If (0, (p) u (几/2,끼 x [兀/3几/2), then 
Qo, Q\,VqQ, Vq\ are determined by setting

气 辭지LR 卩两=1 瓦用/2, 茹;// 

p^/16, 3=/r

由，僧『皿妇招心，肉=如and妃饱 

[7^/16,(p=n

It can be easily obtained that the tangent angles of 
each OGH segment of the COH curves generated by 
above methods are all in the region (0,丸•/ 2) x (3 兀 / 2, 
2龙)l丿(3兀/ 2,2兀)x (0"/2), so these methods can 
guarantee automatic satisfaction of conditions (5) and (7) 
for each segment and consequently, the satisfaction of 
the whole smoothness requirement of the COH curve.

5. Extension of the constructing methods

Let M0 denote the method generating OGH curves 
(i.e., 1-segment COH curves). Obliviously, the above 
seven methods M0〜M6 cannot cover the entire 0代space, 
[02砂 x 0,2i). So we extend the methods as follows:

P(t) is an COH curve generated by method M (shown 
in Fig. 2), PT(f)is a new curve symmetric to P(t) with 
respect to the base line of P(t\ P%) is a new curve 
reversing P(f), and P%) is a new c니rve symmetric to 
P%、) with respect to the base line of then the 
methods generating PT{t), F%) and P%) are called Mr, 
Mr and MRT, respectively.

If the applicable region of method is (Q。)U [伍處], 

사01艸시, then the applicable regions of methods MT, 
Mr and MRT are ⑹妒)U [2zr-6,2, 2兀 一 QJ x \2tt- 
代,2力一Qi],(伊W) U [2〃 —代,2aJ x [2^--6^2, 

271-0]] and (尹'，(舟)代]x [出，但]respectively, 
all these regions are generally called extension regions of 
M. Obviously, after above extension, methods Mh M" 
M\ and M" i = 0,1...6, with the addition of 3= 0,(p= 0 
(OGH curve is a line in this case) can cover the entire 
海-space, [0,2龙)x [0,2^).

6. Comparison of the COH Curves with
Different Object Functions

The discussion above gives the tangent angle constra­
ints that ensure the OGH curves with the object function 
of curvature variation (i.e., based on the smoothness 
criterion of MCV) mathematically and geometrically 
smooth and new methods for constructing COH curves. 
Following these curves are compared with those COH 
curves based on MSE by Yong and Cheng.

As shown in Fig. 3, (a)-(h) are examples of the COH 
curves based on MCV bein응 better than those based on 
MSE;⑴-(n) are examples of the COH curves based on 
MSE being better than those based on MCV; and (o)-(p) 
are Examples of the COH curves with two object 
functions both being unpleasing. Note : Symbols ① and 
② in figure denote the COH curve based on MCV and 
the COH curve based on MSE, respectively.

From the examples, we can draw the conclusion as 
follows:
when
(0,0) w [0, zz/3 ] 사Q 끼！项 2 zz/3, 끼시% 3 ;z/2 ] D (tz/2,2 物)

(澎2,2 汐3) 사"4灯3]1丿 [2矛3, 끼〉〈[澎6方'2][丿[汐(3,2汐3)]

Fig. 2. Extension of methods for constructing COH curves.
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Fig. 3. Comparison of the COH curves with different object fijnctions.

x[4 71/3,3/1/2], Shapes of the COH curves based onMCV 
are more pleasant.
When,
(0,0)日0,刑3]사：兀,2끼1丿[〃3,2充/3]〉＜[3汐2,5汐3]

U[汐3,汐2]시*, 4万3]＜아＞z/3,2汐3]시＞z/3,2汐3], 
아商es of the COH curves based on MSE are more 

pleasant.
When (幻〃)£[2勿3,끼〉〈(汐2仃) , shapes of the COH 
curves based on MCV and MSE are both some 
unpleasing.

We mark the above three regions Rl, R2 and R3. 
After extension, they can cover tan응ent angles of all 
possible cases, and the results of comparisons in the 
extension regions are the same as their respective 
original regions. Furthermore, the proportion of the 
region R1 to the entire -space is approximately equal to 
that of the region R2.

7. Conclusion

The comparison above shows that the smoothness 
criterion of curves is not unique, so different ones sho니Id 
be adopted in different cases to achieve more pleasing 
shapes. This paper gives the conclusion that which 
criterion generates better curves when the tangent angles 
in different regions. Our discussion shows that the 
combination of the new methods with the Yong and 
Cheng's methods can achieve a much better result. To 
the region in which curves based on two criterions are 

both unpleasant, new criterion sh。니Id be considered, 
such as minimum curve length, thafs the future work.
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