• 제목/요약/키워드: Energy load

검색결과 5,174건 처리시간 0.031초

동결 온도와 재하속도에 따른 동결토의 일축압축 및 쪼갬인장 강도특성 (Experimental Study on Unconfined Compression Strength and Split Tensile Strength Properties in relation to Freezing Temperature and Loading Rate of Frozen Soil)

  • 서영교;최헌우
    • 한국해양공학회지
    • /
    • 제26권6호
    • /
    • pp.19-26
    • /
    • 2012
  • Recently the world has been suffering from difficulties related to the demand and supply of energy due to the democratic movements sweeping across the Middle East. Consequently, many have turned their attention to never-developed extreme regions such as the polar lands or deep sea, which contain many underground resources. This research investigated the strength and initial elastic modulus values of eternally frozen ground through a uniaxial compression test and indirect tensile test using frozen artificial soil specimens. To ensure accurate test results, a sandymud mixture of standard Jumunjin sand and kaolinite (20% in weight) was used for the specimens in these laboratory tests. Specimen were prepared by varying the water content ratio (7%, 15%, and 20%). Then, the variation in the strength value, depending on the water content, was observed. This research also established three kinds of environments under freezing temperatures of $-5^{\circ}C$, $-10^{\circ}C$, and $-15^{\circ}C$. Then, the variation in the strength value was observed, depending on the freezing environment. In addition, the tests divided the loading rate into 6 phases and observed the variation in the stress-strain ratio, depending on the loading rate. The test data showed that a lower freezing temperature resulted in a larger strength value. An increase in the ice content in the specimen with the increase in the water content ratio influenced the strength value of the specimen. A faster load rate had a greater influence on the uniaxial compression and indirect tensile strengths of a frozen specimen and produced a different strength engineering property through the initial tangential modulus of elasticity. Finally, the long-term strength under a constant water content ratio and freezing temperature was checked by producing stress-strain ratio curves depending on the loading rate.

소형 풍력발전 시스템을 위한 CRIO 기반의 실시간 제어 시스템 설계 및 다양한 형태의 MPPT 알고리즘 성능 비교 분석 (Design of CRIO-based real-time controller for small-sized wind turbine generating system and comparative study on performance of various MPPT algorithms)

  • 김수진;김병문;김성호
    • 한국지능시스템학회논문지
    • /
    • 제21권1호
    • /
    • pp.55-61
    • /
    • 2011
  • 10KW 이하의 소형 풍력 발전 시스템은 언덕이나, 공원, 도시와 같은 협소한 지역에 유연하게 설치될 수 있다는 장점으로 인해 신재생에너지 분야에서 지속적인 연구/개발이 이루어지고 있다. 소형 풍력 발전기는 낮은가격, 고신뢰도 및 고성능이 중요시되기 때문에 최대 전력을 추종하기 위한 다양한 기법이 요구된다. 일반적으로 제어기의 출력은 DC 부하에 전원을 공급하기 때문에 48V 배터리에 연결되어 동작된다. 본 논문에서는 소형 풍력 발전 시스템을 위한 FPGA 기반 MPPT 제어기를 제안하고자하며, 제안된 시스템에서의 다양한 MPPT 알고리즘의 성능을 검증하기 위해 NI 사에서 제작된 Compact-RIO 컨트롤러를 사용하였다.

낙동강 하굿둑 방류량 및 유사량에 관한 연구 (A Study of Nakdong Estuary Barrage's Discharge and Sediment Load)

  • 복대건;김강민;이중우;강석진
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2018년도 추계학술대회
    • /
    • pp.32-33
    • /
    • 2018
  • 낙동강 하구의 지형변화를 포함한 제 해양환경은 낙동강 하굿둑이 건설된 1987년 7월 이후로 분기된다. 즉, 낙동강 하굿둑이 건설되기 전에는 낙동강의 작은 하상구배로 담수와 해수가 혼합되는 구역이 현재의 하굿둑 보다 상류에 위치하였으나 하굿둑 건설 이후에는 하굿둑 수문 조작에 따라 방류되는 유출수에 의해 유동 양상이 변화되기에, 낙동강 하굿둑의 방류량을 파악하는 것은 매우 중요하다 하겠다. 이에 본 연구에서는 낙동강 하굿둑 제원, 방류패턴, 하굿둑 주변 강수량, 하굿둑 방류량을 분석하였다. 또한, 낙동강 하굿둑 방류량에 의한 유사량 분석을 수행하여, 낙동강 하류역의 지형변동의 기초자료를 제공하였다. 연구결과, 낙동강 하굿둑 방류량은 최근 13년 동안의 연평균방류량은 $19,274.56{\times}106m^3$이고 일평균 방류량은 $52.81{\times}106m^3$이고 초당평균 방류량은 $611.19m^3$으로 산정되었다. 낙동강 하굿둑 건설 이후 퇴사량과 준설량을 근거하여 계산된 연간 평균 총유사량은 $3,184,405m^3/yr$이고, 낙동강 하굿둑의 경우 연평균 부유사량이 $3,153,995m^3/yr$, 소류사량이 $30,410m^3/yr$이며 소유사량이 부유사량의 약 1.0%로 나타났다.

  • PDF

균일하게 탄성지지된 보-기둥요소의 엄밀한 동적강성행렬 유도 (Derivation of Exact Dynamic Stiffness Matrix of a Beam-Column Element on Elastic Foundation)

  • 김문영;윤희택;곽태영
    • 한국전산구조공학회논문집
    • /
    • 제15권3호
    • /
    • pp.463-469
    • /
    • 2002
  • 탄성지반 위에 놓인 보-기둥 요소의 총포텐셜 에너지로부터 변분원리를 적용하여 지배방정식과 힘-변위 관계식을 유도하였다. 4계 상미분방정식 형태의 지배방정식을 4개의 변위 파라메타를 도입하여 1계 연립미분방정식 형태의 선형 고유치 문제로 전환하고, 힘-변위 관계식을 적용하여 엄밀한 정적, 동적 요소강성행렬을 유도하였다. 직접강성법을 이용하여 구조물 강성행렬을 구하고, 2차원 보-기둥구조의 엄밀한 좌굴하중과 고유진동수를 구하고, 결과를 유한요소해와 비교함으로써 본 연구의 타당성을 검증하였다. 이러한 엄밀한 해석방법은 Hermitian 다항식을 형상함수로 도입하여 요소의 강성행렬을 산정하는 유한요소법과 비교할 때, 요소의 수를 대폭 줄일 수 있는 장점이 있다.

의복 안감의 역학적 특성 및 태 평가 (A Study on the Mechanical and Hand Properties of the Lining Fabrics)

  • 김명옥;어미경;박명자
    • 한국의류산업학회지
    • /
    • 제8권3호
    • /
    • pp.357-362
    • /
    • 2006
  • This study is to evaluate the objective sensibility of the commercial lining fabrics. Five kinds of the linings were collected by adding taffetas with four kinds of fibers (polyester, nylon, rayon, and acetate) to one polyester stretch fabric. The six basic mechanical and hand properties were studied by using KES-FB system (Kawabata Evaluation System). The result of measuring the mechanical properties shows that polyester has high bending rigidity (B), that polyester-stretch has a high value of linearity of load-extension curve (LT), tensile energy (WT), tensile resilience (RT), and coefficient of friction (MIU) and a low value of bending rigidity(B), shear property, and geometrical roughness (SMD). The nylon has a high value of bending rigidity (B), shear property, and compression resilience (RC). The rayon has a high value of coefficient of friction (MIU) and linearity of compression-thickness curve (LC) and a low value of shear property, and the acetate has a low value of shear property. The result of hand value shows that polyester, nylon, and acetate are a high value of KOSHI (stiffness), NUMERI (smoothness), and FUKURAM (fullness & softness), and they feel stiff and massive, that rayon has a low value of NUMERI and FUKURAMI. The total result of hand value shows that polyester taffeta and polyester stretch fabric are about the same as the best material for the lining of a woman's dress for spring and summer, and the next thing is acetate, but nylon and rayon are somewhat inferior materials. This provides a fundamental data for the comfortable clothing production of a higher value-added product through the study on the mechanical and hand properties of the lining as well as the right side of fabrics.

Fracture behavior and pore structure of concrete with metakaolin

  • Akcay, Burcu;Sengul, Cengiz;Tasdemir, Mehmet ali
    • Advances in concrete construction
    • /
    • 제4권2호
    • /
    • pp.71-88
    • /
    • 2016
  • Metakaolin, a dehydroxylated product of the mineral kaolinite, is one of the most valuable admixtures for high-performance concrete applications, including constructing reinforced concrete bridges and impact- and fire-resistant structures. Concretes produced using metakaolin become more homogeneous and denser compared to normal-strength concrete. Yet, these changes cause a change of volume throughout hardening, and increase the brittleness of hardened concrete significantly. In order to examine how the use of metakaolin affects the fracture and mechanical behavior of high-performance concrete we produced concretes using a range of water to binder ratio (0.42, 0.35 and 0.28) at three different weight fractions of metakaolin replacement (8%, 16% and 24%). The results showed that the rigidity of concretes increased with using 8% and 16% metakaolin, while it decreased in all series with 24% of metakaolin replacement. Similar effect has also been observed for other mechanical properties. While the peak loads in load-displacement curves of concretes decreased significantly with increasing water to binder ratio, this effect have been found to be diminished by using metakaolin. Pore structure analysis through mercury intrusion porosimetry test showed that the addition of metakaolin decreased the critical pore size of paste phases of concrete, and increasing the amount of metakaolin reduced the total porosity for the specimens with low water to binder ratios in particular. To determine the optimal values of water to binder ratio and metakaolin content in producing high-strength and high-performance concrete we applied a multi-objective optimization, where several responses were simultaneously assessed to find the best solution for each parameter.

초.중.고등학교 시설의 급수 사용량에 대한 연구 (A Study on Typical Rates of Water-use for Primary School, Middle School and High School Facilities)

  • 김규생
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.510-515
    • /
    • 2007
  • A Study on Typical Rates of Water-use for School Facilities has been carried out in this work. Water supply system is given much weight in school facilities. Therefore, it set up a basis efficiency using of water sources to calculate typical rates of water use. The results are summarized as follows ; 1) On the whole, typical rates of water-use was founded out 15 L / stu. d in pirmary school, 10 L / stu. d in middle school and 30L / stu. d in high school smaller than the existing it. It was rate of water-use change as season and Max. Rates of water-use was July. 2) I deem that school hours are 5 hour's in primary school, 7 hour's in middle school and 8 hour's in high school. It the concept of 1 hour that is lesson time 40 minutes and resting time 10 minutes in primary school, lesson time 45 minutes and resting time 10 minutes in middle school and lesson time 50 minutes and resting time 10 minutes in high school. 3) It is desired that we calculate the volume of pump and water tank throughout this concept and the size of water tank should be 1.5 times with taking pick load into consideration by this study on typical rate of water-use. 4) The amount of using water increases in gradually and I consider the life cycle of facilities is more than 10 years. As a result, I can forecast that the size will be insufficiency but I deem that if we devise a plan about parallel pumping on water tank space, we can cope with it. Also, it is expected that we can cut back the transport energy by controlling pump volume.

  • PDF

관성용접(慣性熔接)된 이종재질(異種材質) IN713C-SAE8630의 용접성능(熔接性能)에 회전속도(回轉速度)가 미치는 영향(影響) (Effects of Rotational Velocity on Weld Character of Inertia-Welded IN713C-SAE8630)

  • 오세규
    • 대한조선학회지
    • /
    • 제9권2호
    • /
    • pp.43-48
    • /
    • 1972
  • Inertia friction welding, a relatively recent innovation in the art of joining materials, is a forge-welding process that releases kinetic energy stored in the flywheel as frictional heat when two parts are rubbed together under the right conditions. In a comparatively short time, the process has become a reliable method for joining ferrous, and dissimilar metals. The process is based on thrusting one part, attached to a flywheel and rotating at a relatively high speed, against a stationary part. The contacting surfaces, heated to plastic temperatures, are forged together to produce a reliable, high-strength weld. Welds are made with little or no workpiece preparation and without filler metal or fluxes. However, In order to obtain a good weld, the determination of the optimum weld parameters is an important problem. Especially, because the amount of the flywheel mass will be determined according to the initial rotating velocity values at the constant thrust load, the initial rotating velocity is an important factor to affect a weld character of the inertia-welded IN713C-SAE8630, which is used for the wheel-shafts of turbine rotors or turbochargers, exhausting valves, etc. In this paper, the effects of initial rotational velocity on a weld character of inertia-welded IN713C-SAE8630 was studied through considerations of weld parameters determination, micro-structural observations and tensile tests. The results are as the following: 1) As initial rotating velocity was reduced to 267 FPM, cracks and carbide stringers were completely eliminated in the micro-structure of welded zone. 2) As initial rotating velocity was reduced and flywheel mass was increased correspondingly, the maximum welding temperatures were decreased and the plastic working in the weld zone was increased. 3) As initial rotating velocity was progressively decreased and carbides were decreased, the tensile strengths were increased. 4) And also the fracture location moved out of the weld zone and the tensile tests produced, the failures only in the cast superalloy IN713C which do not extend into the weld area. 5) The proper initial rotating velocity could be determined as about 250 thru 350 FPM for the better weld character.

  • PDF

Dynamic Magnetostriction Characteristics of an Fe-Based Nanocrystalline FeCuNbSiB Alloy

  • Chen, Lei;Li, Ping;Wen, Yumei
    • Journal of Magnetics
    • /
    • 제16권3호
    • /
    • pp.211-215
    • /
    • 2011
  • The dynamic magnetostriction characteristics of an Fe-based nanocrystalline FeCuNbSiB alloy are investigated as a function of the dc bias magnetic field. The experimental results show that the piezomagnetic coefficient of FeCuNbSiB is about 2.1 times higher than that of Terfenol-D at the low dc magnetic bias $H_{dc}$ = 46 Oe. Moreover, FeCuNbSiB has a large resonant dynamic strain coefficient at quite low Hdc due to a high mechanical quality factor, which is 3-5 times greater than that of Terfenol-D at the same low $H_{dc}$. Based on such magnetostriction characteristics, we fabricate a new type of transducer with FeCuNbSiB/PZT-8/FeCuNbSiB. Its maximum resonant magnetoelectric voltage coefficient achieves ~10 V/Oe. The ME output power reaches 331.8 ${\mu}W$ at an optimum load resistance of 7 $k{\Omega}$ under 0.4 Oe ac magnetic field, which is 50 times higher than that of the previous ultrasonic-horn-substrate composite transducer and it decreases the size by nearly 86%. The performance indicate that the FeCuNbSiB/PZT-8/FeCuNbSiB transducer is promising for application in highly efficient magnetoelectric energy conversion.

고속철도 콘크리트궤도 체결구 최적 수직강성 (Optimal Vertical Stiffness of Fastener of Concrete Track in High-Speed Railway)

  • 양신추
    • 한국철도학회논문집
    • /
    • 제18권1호
    • /
    • pp.43-52
    • /
    • 2015
  • 궤도의 유지보수비와 전력소모비의 합이 최소로 되는 최적 체결구의 강성을 평가하여 가급적 이 값을 갖도록 체결구를 제작 및 유지관리하는 것은 국내 콘크리트궤도의 부설이 급격하게 증가하는 시점에서 철도의 경제성 제고 차원에서 중요한 과제라 할 수 있다. 본 연구에서는 콘크리트궤도에서 궤도의 유지보수비와 차량운행에 따른 전력소모비의 합을 최소로 하는 최적 체결구 강성을 평가하는 방법을 제시한 후, 국내 고속철도 콘크리트궤도에 맞는 최적 체결구 강성을 평가하였다. 체결구 강성에 따른 궤도 유지보수비를 합리적으로 평가하기 위하여 콘크리트궤도에 적합한 체결구 강성에 따른 궤도손상모델을 제시하였으며, 궤도손상에 따른 궤도 유지보수비 상관관계를 도출하였다. 윤중 계산 시 고도화된 수치해석적 기법을 적용하여 각 궤도구성품의 거동특성이 반영될 수 있도록 함으로써 체결구 강성에 따른 윤중변동을 보다 정확하게 평가할 수 있도록 하였다.